# Appointment with Distality

distal, adj. Anat. Situated away from the centre of the body, or from the point of origin (said of the extremity or distant part of a limb or organ); terminal. Opp. to proximal. [← stem of dist- (in distant adj.) + -al, after dorsal, ventral, etc.] — Oxford English Dictionary

When a point jumps inside a triangle, moving halfway towards a randomly chosen vertex each time, a fractal known as the Sierpiński triangle appears:

Point jumping halfway towards random vertex of a triangle

Point jumping inside triangle (black-and-white version)

But when a point moves at random in the same way inside a square, no fractal appears. Instead, the interior of the square gradually fills with a haze of pixels:

Point jumping halfway towards random vertex of a square

Now trying imposing restrictions on the point jumping inside a square. If it can’t jump towards a vertex twice in a row, this fractal appears:

Ban consecutive jumps towards same vertex

Ban consecutive jumps towards same vertex (black-and-white version)

Suppose the vertices are numbered from 1 to 4 and the point can’t jump towards the vertex one lower than the previously chosen vertex. That is, if it jumps towards vertex 3, it can’t jump next towards vertex 2, but it can jump towards vertices 1, 3, or 4 (if the vertex is 1, it’s banned from moving towards vertex 4, i.e. 1-1 = 0 = 4). Now this fractal appears:

This is the fractal when the point can’t jump towards the vertex two places lower than the one it has just jumped towards:

But if you can ban, you can also un-ban. Suppose the point jumps towards vertex v at time t and is then banned from jumping towards vertex v-2 at time t+1 unless it had jumped towards vertex v-1 at time t-1. This interesting fractal appears:

Ban jump v-2 at t+1 unless jump v-1 at t-1

Here are some more fractals using the ban / un-ban technique:

Ban / un-ban various

Ban jump v+0 at t+1 unless jump v+1 at t-1

Ban jump v+1 at t+1 unless jump v+3 at t-1

Ban jump v+0 at t+1 unless jump v+2 at t-1

Ban jump v+2 at t+1 unless jump v+2 at t-1

Ban / un-ban various

You can also impose or lift bans based not on the vertex the point jumps towards, but on the distance the point jumps. For example, take the radius r of the circle circumscribing the square and divide it into four segments, 0 to ¼r, ¼r to ½r, ½r to ¾r, and ¾r to r. When the point is going to jump towards vertex v, test whether its jump will land in the same segment, measured from the center of the circle, as it currently occupies. If it does, ban the jump and choose another vertex. Or unban the vertex if the point occupied segment s + x at time t-1. Here are some of the fractals produced using this technique:

Ban / un-ban based on distance jumped

Ban jump into segment s+0 of 4

Ban jump into segment s+1 from center

Ban jump into segment s+2

Ban jump into s+2 at t+1 unless jump into s+2 at at t-1

Ban jump into s+0 from present point

Ban jump into s+2 from present point

Ban jump into s+3 from present point

Ban jump into s+0 at t+1 unless jump into s+1 at at t-1

It’s easy to think of variants on all these themes, but I’ll leave them as an exercise for the interested reader.

# The Swing’s the Thing

Order emerges from chaos with a triangle or pentagon, but not with a square. That is, if you take a triangle or a pentagon, chose a point inside it, then move the point repeatedly halfway towards a vertex chosen at random, a fractal will appear:

Sierpiński triangle from point jumping halfway to randomly chosen vertex

Sierpiński pentagon from point jumping halfway to randomly chosen vertex

But it doesn’t work with a square. Instead, the interior of the square slowly fills with random points:

Square filling with point jumping halfway to randomly chosen vertex

As I showed in Polymorphous Perverticity, you can create fractals from squares and randomly moving points if you ban the point from choosing the same vertex twice in a row, and so on. But there are other ways. You can take the point, move it towards a vertex at random, then swing it around the center of the square through some angle before you mark its position, like this:

Point moves at random, then swings by 90° around center

Point moves at random, then swings by 180° around center

You can also adjust the distance of the point from the center of the square using a formula like dist = r * rmdist, where dist is the distance, r is the radius of the circle in which the circle is drawn, and rm takes values like 0.1, 0.25, 0.5, 0.75 and so on:

Point moves at random, dist = r * 0.05 – dist

Point moves at random, dist = r * 0.1 – dist

Point moves at random, dist = r * 0.2 – dist

But you can swing the point while applying a vertex-ban, like banning the previously chosen vertex, or the vertex 90° or 180° away. In fact, swinging the points converts one kind of vertex ban into the others.

Point moves at random towards vertex not chosen previously

Point moves at random, then swings by 45°

Point moves at random, then swings by 360°

Point moves at random, then swings by 697.5°

Point moves at random, then swings by 720°

Point moves at random, then swings by 652.5°

Animated angle swing

You can also reverse the swing at every second move, swing the point around a vertex instead of the center or around a point on the circle that encloses the square. Here are some of the fractals you get applying these techniques.

Point moves at random, then swings alternately by 45°, -45°

Point moves at random, then swings alternately by 90°, -90°

Point moves at random, then swings alternately by 135°, -135°

Point moves at random, then swings alternately by 180°, -180°

Point moves at random, then swings alternately by 225°, -225°

Point moves at random, then swings alternately by 315°, -315°

Point moves at random, then swings alternately by 360°, -360°

Animated alternate swing

Point moves at random, then swings around point on circle by 45°

Point moves at random, then swings around point on circle by 67.5°

Point moves at random, then swings around point on circle by 90°

Point moves at random, then swings around point on circle by 112.5°

Point moves at random, then swings around point on circle by 135°

Point moves at random, then swings around point on circle by 180°

Animated circle swing

# Tri Again (Again)

I didn’t expect to find the hourglass fractal playing with squares. I even less expected it playing with triangles. Isosceles right triangles, to be precise. Then again, I found it first playing with the L-triomino, which is composed of three squares. And an isosceles triangle is half of a square. So it all fits. This is an isosceles right triangle:

Isosceles right triangle

It’s mirror-symmetrical, so it looks the same in a mirror unless you label one of the acute-angled corners in some way, like this:

Right triangle with labelled corner

Right triangle reflected

Reflection is how you find the hourglass fractal. First, divide a right triangle into four smaller right triangles.

Right triangle rep-tiled

Then discard one of the smaller triangles and repeat. If the acute corners of the smaller triangles have different orientations, one of the permutations creates the hourglass fractal, like this:

Hourglass #1

Hourglass #2

Hourglass #3

Hourglass #4

Hourglass #5

Hourglass #6

Hourglass #7

Hourglass #8

Hourglass #9

Hourglass animated

Another permutation of corners creates what I’ve decided to call the crane fractal, like this:

Crane fractal animated

Crane fractal (static)

The crane fractal is something else that I first found playing with the L-triomino:

Crane fractal from L-triomino

Previously pre-posted:

# Performativizing the Polygonic

Maths is a mountain: you can start climbing in different places and reach the same destination. There are many ways of proving the irrationality of √2 or the infinitude of the primes, for example. But you can also arrive at the same destination by accident. I’ve found that when I use different methods of creating fractals. The same fractals appear, because apparently different algorithms are actually the same underneath.

But different methods can create unique fractals too. I’ve found some new ones by using what might be called point-to-point recursion. For example, there are ten ways to select three vertices from the five vertices of a pentagon: (1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5). Find the midpoint of the first three-point set, (1, 2, 3). Then select two vertices to go with this midpoint, creating a new three-point set, and find the midpoint again. And so on. The process looks like this, with the midpoints shown for all the three-point sets found at each stage:

vertices = 5, choose sets of 3 points, find mid-point of each

At stage 5, the fractal looks like this:

v = 5, p = 3

Note that when pixels are used again, the colour changes. That’s another interesting thing about maths: limits can sometimes produce deeper results. If these fractals were drawn at very high resolution, pixels would only be used once and the colour would never change. As it is, low resolution means that pixels are used again and again. But some are used more than others, which is why interesting colour effects appear.

If the formation of the fractal is animated, it looks like this (with close-ups of even deeper stages):

Here are some more examples:

v = 4 + central point, p = 2 (cf. Fingering the Frigit)

v = 4c, p = 2 (animated)

v = 4, p = 3

v = 5, p = 4

v = 5 + central point, p = 3

v = 5c, p = 4

v = 5c, p = 5

v = 6 + 1 point between each pair of vertices, p = 6

v = 6, p = 2

v = 6, p = 3

v = 6, p = 4

v = 6c, p = 2 (cf. Fingering the Frigit)

v = 6c, p = 3

v = 6c, p = 4

v = 7, p = 3

v = 7, p = 4

v = ,7 p = 5

v = 7c, p = 4

v = 3+1, p = 2

v = 3+1, p = 3

v = 3+1, p = 4

v = 3+2, p = 5

v = 3c+1, p = 2

v = 3c+1, p = 4

v = 3c, p = 2

v = 3c, p = 3

v = 4+1, p = 3

v = 4+1, p = 4

v = 4+1, p = 6

v = 4+1, p = 2

v = 4c+1, p = 4

v = 4c, p = 3

v = 5+1, p = 4 (and more)

v = 5, p = 2

# Polymorphous Perverticity

As I’ve explained before on Overlord of the Über-Feral, the planet’s premier purveyor of polygonic performativity (probably (possibly (perspectivistically))), it works with triangles and pentagons, but not with squares. And what is “it”? A simple procedure in which you create a polygon, choose a point inside it, then repeatedly move half-way towards a vertex chosen at random, marking each new position as you go.

When the polygon has three vertices, you get a Sierpiński triangle. When it has five, you get what might be called a  Sierpiński pentagon. When it has four, you get nothing. Or rather: you get everything, because the whole interior of the square gradually fills with points. But, as I’ve also explained before, there’s a simple way to change this. You can adapt the procedure so that a vertex can’t be chosen twice in a row, and so on.

When the rule is “No vertex twice in a row”, you get this fractal (colours change as a pixel is selected again):

But you can also use what might be a vertex increment, or vi, whereby you disallow vertices that are next to the previously chosen vertex, or two positions away, and so on. When the rule is “No vertex twice in a row”, the disallowed vertex is (v + 0), that is, vi = 0. If vi = 2 and the rule is disallow(v + 2), this fractal appears (when vi = 1, there’s no fractal):

v = 4, vi = 2

You can extend these rules to apply not just to the previously chosen vertex, but also to the vertex chosen before that. Here are some fractals produced by the rule disallow(v[1] + vi[1], v[2] + vi[2]), where v[1] is the vertex previously chosen and v[2] is the vertex chosen before that:

v = 4, vi[1] = 1, vi[2] = 2

v = 4, vi[1] = 2, vi[2] = 0

v = 4, vi[1] = 2, vi[2] = 1

v = 4, vi[1] = 2, vi[2] = 2

And here are some fractals produced by the rule disallow(v[1] + vi[1], v[2] + vi[2], v[3] + vi[3]):

v = 4, vi[1] = 1, vi[2] = 1, vi[3] = 0

v = 4, vi[1] = 1, vi[2] = 1, vi[3] = 2

Applying these rules to pentagons rather than squares doesn’t produce such a dramatic difference, because the original procedure – choose any vertex at random, taking no account of previous choices – produces a fractal when v = 5, as noted above, but not when v = 4. Nevertheless, here are some fractals for v > 4:

v = 5, vi = 0

v = 5, vi = 1

v = 5, vi = 2

v = 5, vi[1] = 0, vi[2] = 0

v = 5, vi[1] = 1, vi[2] = 0

v = 5, vi[1] = 2, vi[2] = 0

v = 5, vi[1] = 1, vi[2] = 1

v = 5, vi[1] = 1, vi[2] = 1, vi[3] = 1

v = 5, vi = various

v = 6, vi = 1

# Fingering the Frigit

Fingers are fractal. Where a tree has a trunk, branches and twigs, a human being has a torso, arms and fingers. And human beings move in fractal ways. We use our legs to move large distances, then reach out with our arms over smaller distances, then move our fingers over smaller distances still. We’re fractal beings, inside and out, brains and blood-vessels, fingers and toes.

But fingers are fractal are in another way. A digit – digitus in Latin – is literally a finger, because we once counted on our fingers. And digits behave like fractals. If you look at numbers, you’ll see that they contain patterns that echo each other and, in a sense, recur on smaller and smaller scales. The simplest pattern in base 10 is (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). It occurs again and again at almost very point of a number, like a ten-hour clock that starts at zero-hour:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9…
10, 11, 12, 13, 14, 15, 16, 17, 18, 19…
200… 210… 220… 230… 240… 250… 260… 270… 280… 290…

These fractal patterns become visible if you turn numbers into images. Suppose you set up a square with four fixed points on its corners and a fixed point at its centre. Let the five points correspond to the digits (1, 2, 3, 4, 5) of numbers in base 6 (not using 0, to simplify matters):

1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 41, 42, 43, 44, 45, 51, 52, 53, 54, 55, 61, 62, 63, 64, 65… 2431, 2432, 2433, 2434, 2435, 2441, 2442, 2443, 2444, 2445, 2451, 2452…

Move between the five points of the square by stepping through the individual digits of the numbers in the sequence. For example, if the number is 2451, the first set of successive digits is (2, 4), so you move to a point half-way between point 2 and point 4. Next come the successive digits (4, 5), so you move to a point half-way between point 4 and point 5. Then come (5, 1), so you move to a point half-way between point 5 and point 1.

When you’ve exhausted the digits (or frigits) of a number, mark the final point you moved to (changing the colour of the pixel if the point has been occupied before). If you follow this procedure using a five-point square, you will create a fractal something like this:

A pentagon without a central point using numbers in a zero-less base 7 looks like this:

A pentagon with a central point looks like this:

Hexagons using a zero-less base 8 look like this:

But the images above are just the beginning. If you use a fixed base while varying the polygon and so on, you can create images like these (here is the program I used):

# The Art Grows Onda

Anyone interested in recreational mathematics should seek out three compendiums by Ian Stewart: Professor Stewart’s Cabinet of Mathematical Curiosities (2008), Professor Stewart’s Hoard of Mathematical Treasures (2009) and Professor Stewart’s Casebook of Mathematical Mysteries (2014). They’re full of ideas and puzzles and are excellent introductions to the scope and subtlety of maths. I first came across Alexander’s Horned Sphere in one of them. I also came across this simpler shape that packs infinity into a finite area:

I call it a horned triangle or unicorn triangle and it reminds me of a wave curling over, like Katsushika Hokusai’s The Great Wave off Kanagawa (c. 1830) (“wave” is unda in Latin and onda in Spanish).

The Great Wave off Kanagawa by Katsushika Hokusai (1760–1849)

To construct the unicorn triangle, you take an equilateral triangle with sides of length 1 and erect a triangle with sides of length 0.5 on one of its corners. Then on the corresponding corner of the new triangle you erect a triangle with sides of length 0.25. And so on, for ever.

When you double the sides of a polygon, you quadruple the area: a 1×1 square has an area of 1, a 2×2 square has an area of 4. Accordingly, when you halve the sides of a polygon, you quarter the area: a 1×1 square has an area of 1, a 0.5 x 0.5 square has an area of 0.25 or 1/4. So if the original triangle of the unicorn triangle above has an area of 1 rather than sides of 1, the first triangle added has an area of 0.25 = 1/4, the next an area of 0.0625 = 1/16, and so on. The infinite sum is this:

1/4 + 1/16 + 1/256 + 1/1024 + 1/4096 + 1/16384…

Which equals 1/3. This becomes important when you see the use made of the shape in Stewart’s book. The unicorn triangle is a rep-tile, or a shape that can be divided into smaller copies of the same shape:

An equilateral triangle can be divided into four copies of itself, each 1/4 of the original area. If an equilateral triangle with an area of 4 is divided into three unicorn triangles, each unicorn has an area of 1 + 1/3 and 3 * (1 + 1/3) = 4.

Because it’s a rep-tile, a unicorn triangle is also a fractal, a shape that is self-similar at smaller and smaller scales. When one of the sub-unicorns is dropped, the fractals become more obvious:

Elsewhere other-posted:

# Get Your Prox Off

Create a triangle. Find a point somewhere inside it. Choose a corner at random and move halfway towards it. Mark the new point. Repeat the procedure: choose, move, mark. Repeat again and again. In time, a fractal will appear:

However, if you try the same thing with a square – choose a corner at random, move halfway towards it, mark the new point, repeat – no fractal appears. Instead, the points fill the interior of the square:

But what happens if you impose restrictions on the randomly chosen corner (or chorner)? Suppose you can’t choose the same corner twice in a row. If this rule is applied to the square, this fractal appears:

Now apply the no-corner-twice-in-a-row rule to a square that contains a central chorner. This fractal appears:

And if the rule is that you can choose a corner twice in a row but not thrice? This fractal appears:

Here is the rule is that a corner can’t be chosen if it was chosen two moves ago:

But what if the restriction is based not on how often or when a corner is chosen, but on its proximity, i.e. how near it is to the marked point? If the nearest corner can’t be chosen, the result is the same as the no-corner-twice-in-a-row rule:

But if the second-nearest corner can’t be chosen, this fractal appears:

This is the fractal when the third-nearest corner can’t be chosen:

And this is the fractal when the fourth-nearest, or most distant, corner can’t be chosen:

Here are the same restrictions applied to a pentagon:

Nearest corner forbidden

Second-nearest corner forbidden

Third corner forbidden

Fourth corner forbidden

Fifth corner forbidden

Fifth corner forbidden (animated)

And a pentagon with a central chorner:

Now try excluding more than one corner. Here are pentagons excluding the n-nearest and n+1-nearest corners (for example, the nearest and second-nearest corners; the second-nearest and third-nearest; and so on):

But what if the moving point is set equal to the n-nearest corner before it moves again? If the corner is the second-nearest and the shape is a triangle with a central chorner, this is the fractal that appears:

Animated version

And here is the same rule applied to various n-nearest corners in a pentagon:

# Over Again

In Boldly Breaking the Boundaries, I looked at the use of squares in what I called over-fractals, or fractals whose sub-divisions reproduce the original shape but appear beyond its boundaries. Now I want to look at over-fractals using triangles. They’re less varied than those involving squares, but still include some interesting shapes. This is the space in which sub-triangles can appear, with the central seeding triangle coloured gray:
Here are some over-fractals based on the pattern above:

# Hex Appeal

A polyiamond is a shape consisting of equilateral triangles joined edge-to-edge. There is one moniamond, consisting of one equilateral triangle, and one diamond, consisting of two. After that, there are one triamond, three tetriamonds, four pentiamonds and twelve hexiamonds. The most famous hexiamond is known as the sphinx, because it’s reminiscent of the Great Sphinx of Giza:

It’s famous because it is the only known pentagonal rep-tile, or shape that can be divided completely into smaller copies of itself. You can divide a sphinx into either four copies of itself or nine copies, like this (please open images in a new window if they fail to animate):

So far, no other pentagonal rep-tile has been discovered. Unless you count this double-triangle as a pentagon:

It has five sides, five vertices and is divisible into sixteen copies of itself. But one of the vertices sits on one of the sides, so it’s not a normal pentagon. Some might argue that this vertex divides the side into two, making the shape a hexagon. I would appeal to these ancient definitions: a point is “that which has no part” and a line is “a length without breadth” (see Neuclid on the Block). The vertex is a partless point on the breadthless line of the side, which isn’t altered by it.

But, unlike the sphinx, the double-triangle has two internal areas, not one. It can be completely drawn with five continuous lines uniting five unique points, but it definitely isn’t a normal pentagon. Even less normal are two more rep-tiles that can be drawn with five continuous lines uniting five unique points: the fish that can be created from three equilateral triangles and the fish that can be created from four isosceles right triangles: