Zequality Now

Here are the numbers one to eight in base 2:

1, 10, 11, 100, 101, 110, 111, 1000…

Now see what happens when you count the zeroes:


1, 10[1], 11, 10[2]0[3], 10[4]1, 110[5], 111, 10[6]0[7]0[8]...

In base 2, the numbers one to eight contain exactly eight zeroes, that is, zerocount(1..8,b=2) = 8. But it doesn’t work out so exactly in base 3:


1, 2, 10[1], 11, 12, 20[2], 21, 22, 10[3]0[4], 10[5]1, 10[6]2, 110[7], 111, 112, 120[8], 121, 122, 20[9]0[10], 20[11]1, 20[12]2, 210[13], 211, 212, 220[14], 221, 222, 10[15]0[16]0[17], 10[18]0[19]1, 10[20]0[21]2, 10[22]10[23], 10[24]11, 10[25]12, 10[26]20[27], 10[28]21, 10[29]22, 110[30]0[31], 110[32]1, 110[33]2, 1110[34], 1111, 1112, 1120[35], 1121, 1122, 120[36]0[37], 120[38]1, 120[39]2, 1210[40], 1211, 1212, 1220[41], 1221, 1222, 20[42]0[43]0[44], 20[45]0[46]1, 20[47]0[48]2, 20[49]10[50], 20[51]11, 20[52]12, 20[53]20[54], 20[55]21, 20[56]22, 210[57]0[58], 210[59]1, 210[60]2, 2110[61], 2111, 2112, 2120[62], 2121, 2122, 220[63]0[64], 220[65]1, 220[66]2, 2210[67], 2211, 2212, 2220[68], 2221, 2222, 10[69]0[70]0[71]0[72], 10[73]0[74]0[75]1, 10[76]0[77]0[78]2, 10[79]0[80]10[81], 10[82]0[83]11, 10[84]0[85]12, 10[86]0[87]20[88]...

In base 3, 10020 = 87 and zerocount(1..87,b=3) = 88. And what about base 4? zerocount(1..1068,b=4) = 1069 (n=100,230 in base 4). After that, zerocount(1..16022,b=5) = 16023 (n=1,003,043 in base 5) and zerocount(1..284704,b=6) = 284,705 (n=10,034,024 in base 6).

The numbers are getting bigger fast and it’s becoming increasingly impractible to count the zeroes individually. What you need is an algorithm that will take any given n and work out how many zeroes are required to write the numbers 1 to n. The simplest way to do this is to work out how many times 0 has appeared in each position of the number. The 1s position is easy: you simply divide the number by the base and discard the remainder. For example, in base 10, take the number 25. The 0 must have appeared in the 1s position twice, for 10 and 20, so zerocount(1..25) = 25 \ 10 = 2. In 2017, the 0 must have appeared in the 1s position 201 times = 2017 \ 10. And so on.

It gets a little trickier for the higher positions, the 10s, 100s, 1000s and so on, but the same basic principle applies. And so you can easily create an algorithm that takes a number, n, and produces zerocount(1..n) in a particular base. With this algorithm, you can quickly find zerocount(1..n) >= n in higher bases:


zerocount(1..1000,b=2) = 1,000 (n=8)*
zerocount(1..10020,b=3) = 10,021 (n=87)
zerocount(1..100230,b=4) = 100,231 (n=1,068)
zerocount(1..1003042,b=5) = 1,003,043 (n=16,022)
zerocount(1..10034024,b=6) = 10,034,025 (n=284,704)
zerocount(1..100405550,b=7) = 100,405,551 (n=5,834,024)
zerocount(1..1004500236,b=8) = 1,004,500,237 (n=135,430,302)
zerocount(1..10050705366,b=9) = 10,050,705,367 (n=3,511,116,537)
zerocount(1..100559404366,b=10) = 100,559,404,367
zerocount(1..1006083A68919,b=11) = 1,006,083,A68,919 (n=3,152,738,985,031)*
zerocount(1..10066AA1430568,b=12) = 10,066,AA1,430,569 (n=107,400,330,425,888)
zerocount(1..1007098A8719B81,b=13) = 100,709,8A8,719,B81 (n=3,950,024,143,546,664)*
zerocount(1..10077C39805D81C7,b=14) = 1,007,7C3,980,5D8,1C8 (n=155,996,847,068,247,395)
zerocount(1..10080B0034AA5D16D,b=15) = 10,080,B00,34A,A5D,171 (n=6,584,073,072,068,125,453)
zerocount(1..10088DBE29597A6C77,b=16) = 100,88D,BE2,959,7A6,C77 (n=295,764,262,988,176,583,799)*
zerocount(1..10090C5309AG72CBB3F,b=17) = 1,009,0C5,309,AG7,2CB,B3G (n=14,088,968,131,538,370,019,982)
zerocount(1..10099F39070FC73C1G73,b=18) = 10,099,F39,070,FC7,3C1,G75 (n=709,394,716,006,812,244,474,473)
zerocount(1..100A0DC1258614CA334EB,b=19) = 100,A0D,C12,586,14C,A33,4EC (n=37,644,984,315,968,494,382,106,708)
zerocount(1..100AAGDEEB536IBHE87006,b=20) = 1,00A,AGD,EEB,536,IBH,E87,008 (n=2,099,915,447,874,594,268,014,136,006)

And you can also easily find the zequal numbers, that is, the numbers n for which, in some base, zerocount(1..n) exactly equals n:


zerocount(1..1000,b=2) = 1,000 (n=8)
zerocount(1..1006083A68919,b=11) = 1,006,083,A68,919 (n=3,152,738,985,031)
zerocount(1..1007098A8719B81,b=13) = 100,709,8A8,719,B81 (n=3,950,024,143,546,664)
zerocount(1..10088DBE29597A6C77,b=16) = 100,88D,BE2,959,7A6,C77 (n=295,764,262,988,176,583,799)
zerocount(1..100CCJFFAD4MI409MI0798CJB3,b=24) = 10,0CC,JFF,AD4,MI4,09M,I07,98C,JB3 (n=32,038,681,563,209,056,709,427,351,442,469,835)
zerocount(1..100DDL38CIO4P9K0AJ7HK74EMI7L,b=26) = 1,00D,DL3,8CI,O4P,9K0,AJ7,HK7,4EM,I7L (n=160,182,333,966,853,031,081,693,091,544,779,177,187)
zerocount(1..100EEMHG6OE8EQKO0BF17LCCIA7GPE,b=28) = 100,EEM,HG6,OE8,EQK,O0B,F17,LCC,IA7,GPE (n=928,688,890,453,756,699,447,122,559,347,771,300,777,482)
zerocount(1..100F0K7MQO6K9R1S616IEEL2JRI73PF,b=29) = 1,00F,0K7,MQO,6K9,R1S,616,IEE,L2J,RI7,3PF (n=74,508,769,042,363,852,559,476,397,161,338,769,391,145,562)
zerocount(1..100G0LIL0OQLF2O0KIFTK1Q4DC24HL7BR,b=31) = 100,G0L,IL0,OQL,F2O,0KI,FTK,1Q4,DC2,4HL,7BR (n=529,428,987,529,739,460,369,842,168,744,635,422,842,585,510,266)
zerocount(1..100H0MUTQU3A0I5005WL2PD7T1ASW7IV7NE,b=33) = 10,0H0,MUT,QU3,A0I,500,5WL,2PD,7T1,ASW,7IV,7NE (n=4,262,649,311,868,962,034,947,877,223,846,561,239,424,294,726,563,632)
zerocount(1..100HHR387RQHK9OP6EDBJEUDAK35N7MN96LB,b=34) = 100,HHR,387,RQH,K9O,P6E,DBJ,EUD,AK3,5N7,MN9,6LB (n=399,903,937,958,473,433,782,862,763,628,747,974,628,490,691,628,136,485)
zerocount(1..100IISLI0CYX2893G9E8T4I7JHKTV41U0BKRHT,b=36) = 10,0II,SLI,0CY,X28,93G,9E8,T4I,7JH,KTV,41U,0BK,RHT (n=3,831,465,379,323,568,772,890,827,210,355,149,992,132,716,389,119,437,755,185)
zerocount(1..100LLX383BPWE[40]ZL0G1M[40]1OX[39]67KOPUD5C[40]RGQ5S6W9[36],b=42) = 10,0LL,X38,3BP,WE[40],ZL0,G1M,[40]1O,X[39]6,7KO,PUD,5C[40],RGQ,5S6,W9[36] (n=6,307,330,799,917,244,669,565,360,008,241,590,852,337,124,982,231,464,556,869,653,913,711,854)
zerocount(1..100MMYPJ[38]14KDV[37]OG[39]4[42]X75BE[39][39]4[43]CK[39]K36H[41]M[37][43]5HIWNJ,b=44) = 1,00M,MYP,J[38]1,4KD,V[37]O,G[39]4,[42]X7,5BE,[39][39]4,[43]CK,[39]K3,6H[41],M[37][43],5HI,WNJ (n=90,257,901,046,284,988,692,468,444,260,851,559,856,553,889,199,511,017,124,021,440,877,333,751,943)
zerocount(1..100NN[36]3813[38][37]16F6MWV[41]UBNF5FQ48N0JRN[40]E76ZOHUNX2[42]3[43],b=46) = 100,NN[36],381,3[38][37],16F,6MW,V[41]U,BNF,5FQ,48N,0JR,N[40]E,76Z,OHU,NX2,[42]3[43] (n=1,411,636,908,622,223,745,851,790,772,948,051,467,006,489,552,352,013,745,000,752,115,904,961,213,172,605)
zerocount(1..100O0WBZO9PU6O29TM8Y0QE3I[37][39]A7E4YN[44][42]70[44]I[46]Z[45][37]Q2WYI6,b=47) = 1,00O,0WB,ZO9,PU6,O29,TM8,Y0Q,E3I,[37][39]A,7E4,YN[44],[42]70,[44]I[46],Z[45][37],Q2W,YI6 (n=182,304,598,281,321,725,937,412,348,242,305,189,665,300,088,639,063,301,010,710,450,793,661,266,208,306,996)
zerocount(1..100PP[39]37[49]NIYMN[43]YFE[44]TDTJ00EAEIP0BIDFAK[46][36]V6V[45]M[42]1M[46]SSZ[40],b=50) = 1,00P,P[39]3,7[49]N,IYM,N[43]Y,FE[44],TDT,J00,EAE,IP0,BID,FAK,[46][36]V,6V[45],M[42]1,M[46]S,SZ[40] (n=444,179,859,561,011,965,929,496,863,186,893,220,413,478,345,535,397,637,990,204,496,296,663,272,376,585,291,071,790)
zerocount(1..100Q0Y[46][44]K[49]CKG[45]A[47]Z[43]SPZKGVRN[37]2[41]ZPP[36]I[49][37]EZ[38]C[44]E[46]00CG[38][40][48]ROV,b=51) = 10,0Q0,Y[46][44],K[49]C,KG[45],A[47]Z,[43]SP,ZKG,VRN,[37]2[41],ZPP,[36]I[49],[37]EZ,[38]C[44],E[46]0,0CG,[38][40][48],ROV (n=62,191,970,278,446,971,531,566,522,791,454,395,351,613,891,150,548,291,266,262,575,754,206,359,828,753,062,692,619,547)
zerocount(1..100QQ[40]TL[39]ZA[49][41]J[41]7Q[46]4[41]66A1E6QHHTM9[44]8Z892FRUL6V[46]1[38][41]C[40][45]KB[39],b=52) = 100,QQ[40],TL[39],ZA[49],41]J[41],7Q[46],4[41]6,6A1,E6Q,HHT,M9[44],8Z8,92F,RUL,6V[46],1[38][41],C[40][45],KB[39] (n=8,876,854,501,927,007,077,802,489,292,131,402,136,556,544,697,945,824,257,389,527,114,587,644,068,732,794,430,403,381,731)
zerocount(1..100S0[37]V[53]Y6G[51]5J[42][38]X[40]XO[38]NSZ[42]XUD[47]1XVKS[52]R[39]JAHH[49][39][50][54]5PBU[42]H3[45][46]DEJ,b=55) = 100,S0[37],V[53]Y,6G[51],5J[42],[38]X[40],XO[38],NSZ,[42]XU,D[47]1,XVK,S[52]R,[39]JA,HH[49],[39][50][54],5PB,U[42]H,3[45][46],DEJ (n=28,865,808,580,366,629,824,612,818,017,012,809,163,332,327,132,687,722,294,521,718,120,736,868,268,650,080,765,802,786,141,387,114)

Advertisements

Oh My Guardian #5

‘We’re stepping out of a binary’ – celebrating the art of marginalized LGBT Muslims

[…] The show features artwork themed around issues of Islamophobia, racism and homophobia to “highlight the struggles common among contemporary Muslim queer, trans and gender non-conforming communities,” said co-curator and activist Yas Ahmed. — ‘We’re stepping out of a binary’, The Guardian, 22/i/2018.


Elsewhere other-accessible:

Oh My Guardian #1
Oh My Guardian #2
Oh My Guardian #3
Oh My Guardian #4
Reds under the Thread

T4K1NG S3LF13S

It’s like watching a seed grow. You take a number and count how many 0s it contains, then how many 1s, how many 2s, 3s, 4s and so on. Then you create a new number by writing the count of each digit followed by the digit itself. Then you repeat the process with the new number.

Here’s how it works if you start with the number 1:

1

The count of digits is one 1, so the new number is this:

→ 11

The count of digits for 11 is two 1s, so the next number is:

→ 21

The count of digits for 21 is one 1, one 2, so the next number is:

→ 1112

The count of digits for 1112 is three 1s, one 2, so the next number is:

→ 3112

The count of digits for 3112 is two 1s, one 2, one 3, so the next number is:

→ 211213

What happens after that? Here are the numbers as a sequence:

1 → 11 → 21 → 1112 → 3112 → 211213 → 312213 → 212223 → 114213 → 31121314 → 41122314 → 31221324 → 21322314

That’s all you need, because something interesting happens with 21322314. The digit count is two 1s, three 2s, two 3s, one 4, so the next number is:

→ 21322314

In other words, 21322314 is what might be called a self-descriptive number: it describes the count of its own digits. That’s why I think this procedure is like watching a seed grow. You start with the tiny seed of 1 and end in the giant oak of 21322314, whose factorization is 2 * 3^2 * 13 * 91121. But there are many more self-descriptive numbers in base ten and some of them are much bigger than 21322314. A047841 at the Online Encyclopedia of Integer Sequences lists all 109 of them (and calls them “autobiographical numbers”). Here are a few, starting with the simplest possible:

22 → two 2s → 22
10213223 → one 0, two 1s, three 2s, two 3s → 10213223
10311233 → one 0, three 1s, one 2, three 3s → 10311233
21322314 → two 1s, three 2s, two 3s, one 4 → 21322314
21322315 → two 1s, three 2s, two 3s, one 5 → 21322315
21322316 → two 1s, three 2s, two 3s, one 6 → 21322316*
1031223314 → one 0, three 1s, two 2s, three 3s, one 4 → 10
31223314
3122331415 → three 1s, two 2s, three 3s, one 4, one 5
→ 3122331415
3122331416 → three 1s, two 2s, three 3s, one 4, one 6
→ 3122331416*

*And for 21322317, 21322318, 21322319; 3122331417, 3122331418, 3122331419.


And here’s what happens when you seed a sequence with a number containing all possible digits in base ten:

1234567890 → 10111213141516171819 → 101111213141516171819 → 101211213141516171819 → 101112213141516171819

That final number is self-descriptive:

101112213141516171819 → one 0, eleven 1s, two 2s, one 3, one 4, one 5, one 6, one 7, one 8, one 9 → 101112213141516171819

So some numbers are self-descriptive and some start a sequence that ends in a self-descriptive number. But that doesn’t exhaust the possibilities. Some numbers are part of a loop:

103142132415 → 104122232415 → 103142132415
104122232415 → 103142132415 → 104122232415
1051421314152619 → 1061221324251619 → 1051421314152619…
5142131415261819 → 6122132425161819 → 5142131415261819
106142131416271819 → 107122132426171819 → 106142131416271819


10512223142518 → 10414213142518 → 10512213341518 → 10512223142518
51222314251718 → 41421314251718 → 51221334151718 →
51222314251718

But all that is base ten. What about other bases? In fact, nearly all self-descriptive numbers in base ten are also self-descriptive in other bases. An infinite number of other bases, in fact. 22 is a self-descriptive number for all b > 2. The sequence seeded with 1 is identical in all b > 4:

1 → 11 → 21 → 1112 → 3112 → 211213 → 312213 → 212223 → 114213 → 31121314 → 41122314 → 31221324 → 2132231421322314

In bases 2, 3 and 4, the sequence seeded with 1 looks like this:

1 → 11 → 101 → 10101 → 100111 → 1001001 → 1000111 → 11010011101001… (b=2) (1101001[2] = 105 in base 10)
1 → 11 → 21 → 1112 → 10112 → 1010112 → 2011112 → 10111221011122… (b=3) (1011122[3] = 854 in base 10)
1 → 11 → 21 → 1112 → 3112 → 211213 → 312213 → 212223 → 1110213 → 101011213 → 201111213 → 101112213101112213… (b=4) (101112213[4] = 71079 in base 10)

In base 2 there are only two self-descriptive numbers (and no loops):

111 → three 1s → 111… (b=2) (111 = 7 in base 10)
1101001 → three 0s, four 1s → 1101001… (b=2) (1101001 = 105 in base 10)

So if you apply the “count digits” procedure in base 2, all numbers, except 111, begin a sequence that ends in 1101001. Base 3 has a few more self-descriptive numbers and also some loops:

2222… (b >= 3)
10111 → one 0, four 1s → 10111… (b=3)
11112 → four 1s, one 2 → 11112
100101 → three 0s, three 1s → 100101… (b=3)
1011122 → one 0, four 1s, two 2s → 1011122… (b=3)
2021102 → two 0s, two 1s, three 2s → 2021102… (b=3)
10010122 → three 0s, three 1s, two 2s → 10010122


2012112 → 10101102 → 10011112 → 2012112
10011112 → 2012112 → 10101102 → 10011112
10101102 → 10011112 → 2012112 → 10101102

A question I haven’t been able to answer: Is there a base in which loops can be longer than these?

103142132415 → 104122232415 → 103142132415
10512223142518 → 10414213142518 → 10512213341518 → 10512223142518

A question I have been able to answer: What is the sequence when it’s seeded with the title of this blog-post? T4K1NGS3LF13S is a number in all bases >= 30 and its base-30 form equals 15,494,492,743,722,316,018 in base 10 (with the factorization 2 * 72704927 * 106557377767). If T4K1NGS3LF13S seeds a sequence in any b >= 30, the result looks like this:

T4K1NGS3LF13S → 2123141F1G1K1L1N2S1T → 813213141F1G1K1L1N1S1T → A1122314181F1G1K1L1N1S1T → B1221314181A1F1G1K1L1N1S1T → C1221314181A1B1F1G1K1L1N1S1T → D1221314181A1B1C1F1G1K1L1N1S1T → E1221314181A1B1C1D1F1G1K1L1N1S1T → F1221314181A1B1C1D1E1F1G1K1L1N1S1T → G1221314181A1B1C1D1E2F1G1K1L1N1S1T → F1321314181A1B1C1D1E1F2G1K1L1N1S1T → F1222314181A1B1C1D1E2F1G1K1L1N1S1T → E1421314181A1B1C1D1E2F1G1K1L1N1S1T → F1221324181A1B1C1D2E1F1G1K1L1N1S1T → E1421314181A1B1C1D1E2F1G1K1L1N1S1T

For Revver and Fevver

This shape reminds me of the feathers on an exotic bird:

feathers

(click or open in new window for full size)


feathers_anim

(animated version)


The shape is created by reversing the digits of a number, so you could say it involves revvers and fevvers. I discovered it when I was looking at the Halton sequence. It’s a sequence of fractions created according to a simple but interesting rule. The rule works like this: take n in base b, reverse it, and divide reverse(n) by the first power of b that is greater thann.

For example, suppose n = 6 and b = 2. In base 2, 6 = 110 and reverse(110) = 011 = 11 = 3. The first power of 2 that is greater than 6 is 2^3 or 8. Therefore, halton(6) in base 2 equals 3/8. Here is the same procedure applied to n = 1..20:

1: halton(1) = 1/10[2] → 1/2
2: halton(10) = 01/100[2] → 1/4
3: halton(11) = 11/100[2] → 3/4
4: halton(100) = 001/1000[2] → 1/8
5: halton(101) = 101/1000[2] → 5/8
6: halton(110) = 011/1000 → 3/8
7: halton(111) = 111/1000 → 7/8
8: halton(1000) = 0001/10000 → 1/16
9: halton(1001) = 1001/10000 → 9/16
10: halton(1010) = 0101/10000 → 5/16
11: halton(1011) = 1101/10000 → 13/16
12: halton(1100) = 0011/10000 → 3/16
13: halton(1101) = 1011/10000 → 11/16
14: halton(1110) = 0111/10000 → 7/16
15: halton(1111) = 1111/10000 → 15/16
16: halton(10000) = 00001/100000 → 1/32
17: halton(10001) = 10001/100000 → 17/32
18: halton(10010) = 01001/100000 → 9/32
19: halton(10011) = 11001/100000 → 25/32
20: halton(10100) = 00101/100000 → 5/32…

Note that the sequence always produces reduced fractions, i.e. fractions in their lowest possible terms. Once 1/2 has appeared, there is no 2/4, 4/8, 8/16…; once 3/4 has appeared, there is no 6/8, 12/16, 24/32…; and so on. If the fractions are represented as points in the interval [0,1], they look like this:

line1_1_2

point = 1/2


line2_1_4

point = 1/4


line3_3_4

point = 3/4


line4_1_8

point = 1/8


line5_5_8

point = 5/8


line6_3_8

point = 3/8


line7_7_8

point = 7/8


line_b2_anim

(animated line for base = 2, n = 1..63)


It’s apparent that Halton points in base 2 will evenly fill the interval [0,1]. Now compare a Halton sequence in base 3:

1: halton(1) = 1/10[3] → 1/3
2: halton(2) = 2/10[3] → 2/3
3: halton(10) = 01/100[3] → 1/9
4: halton(11) = 11/100[3] → 4/9
5: halton(12) = 21/100[3] → 7/9
6: halton(20) = 02/100 → 2/9
7: halton(21) = 12/100 → 5/9
8: halton(22) = 22/100 → 8/9
9: halton(100) = 001/1000 → 1/27
10: halton(101) = 101/1000 → 10/27
11: halton(102) = 201/1000 → 19/27
12: halton(110) = 011/1000 → 4/27
13: halton(111) = 111/1000 → 13/27
14: halton(112) = 211/1000 → 22/27
15: halton(120) = 021/1000 → 7/27
16: halton(121) = 121/1000 → 16/27
17: halton(122) = 221/1000 → 25/27
18: halton(200) = 002/1000 → 2/27
19: halton(201) = 102/1000 → 11/27
20: halton(202) = 202/1000 → 20/27
21: halton(210) = 012/1000 → 5/27
22: halton(211) = 112/1000 → 14/27
23: halton(212) = 212/1000 → 23/27
24: halton(220) = 022/1000 → 8/27
25: halton(221) = 122/1000 → 17/27
26: halton(222) = 222/1000 → 26/27
27: halton(1000) = 0001/10000 → 1/81
28: halton(1001) = 1001/10000 → 28/81
29: halton(1002) = 2001/10000 → 55/81
30: halton(1010) = 0101/10000 → 10/81

And here is an animated gif representing the Halton sequence in base 3 as points in the interval [0,1]:

line_b3_anim


Halton points in base 3 also evenly fill the interval [0,1]. What happens if you apply the Halton sequence to a two-dimensional square rather a one-dimensional line? Suppose the bottom left-hand corner of the square has the co-ordinates (0,0) and the top right-hand corner has the co-ordinates (1,1). Find points (x,y) inside the square, with x supplied by the Halton sequence in base 2 and y supplied by the Halton sequence in base 3. The square will gradually fill like this:

square1

x = 1/2, y = 1/3


square2

x = 1/4, y = 2/3


square3

x = 3/4, y = 1/9


square4

x = 1/8, y = 4/9


square5

x = 5/8, y = 7/9


square6

x = 3/8, y = 2/9


square7

x = 7/8, y = 5/9


square8

x = 1/16, y = 8/9


square9

x = 9/16, y = 1/27…


square_anim

animated square


Read full page: For Revver and Fevver

Digital Rodeo

What a difference a digit makes. Suppose you take all representations of n in bases b <= n. When n = 3, the bases are 2 and 3, so 3 = 11 and 10, respectively. Next, count the occurrences of the digit 1:

digitcount(3, digit=1, n=11, 10) = 3

Add this digit-count to 3:

3 + digitcount(3, digit=1, n=11, 10) = 3 + 3 = 6.

Now apply the same procedure to 6. The bases will be 2 to 6:

6 + digitcount(6, digit=1, n=110, 20, 12, 11, 10) = 6 + 6 = 12

The procedure, n = n + digitcount(n,digit=1,base=2..n), continues like this:

12 + digcount(12,dig=1,n=1100, 110, 30, 22, 20, 15, 14, 13, 12, 11, 10) = 12 + 11 = 23
23 + digcount(23,dig=1,n=10111, 212, 113, 43, 35, 32, 27, 25, 23, 21, 1B, 1A, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 23 + 21 = 44
44 + digcount(44,dig=1,n=101100, 1122, 230, 134, 112, 62, 54, 48, 44, 40, 38, 35, 32, 2E, 2C, 2A, 28, 26, 24, 22, 20, 1L, 1K, 1J, 1I, 1H, 1G, 1F, 1E, 1D, 1C, 1B, 1A, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 44 + 31 = 75

And the sequence develops like this:

3, 6, 12, 23, 44, 75, 124, 202, 319, 503, 780, 1196, 1824, 2766, 4191, 6338, 9546, 14383, 21656, 32562, 48930, 73494, 110361, 165714, 248733, 373303, 560214, 840602, 1261237, 1892269, 2838926, 4258966, 6389157, 9584585, 14377879…

Now try the same procedure using the digit 0: n = n + digcount(n,dig=0,base=2..n). The first step is this:

3 + digcount(3,digit=0,n=11, 10) = 3 + 1 = 4

Next come these:

4 + digcount(4,dig=0,n=100, 11, 10) = 4 + 3 = 7
7 + digcount(7,dig=0,n=111, 21, 13, 12, 11, 10) = 7 + 1 = 8
8 + digcount(8,dig=0,n=1000, 22, 20, 13, 12, 11, 10) = 8 + 5 = 13
13 + digcount(13,dig=0,n=1101, 111, 31, 23, 21, 16, 15, 14, 13, 12, 11, 10) = 13 + 2 = 15
15 + digcount(15,dig=0,n=1111, 120, 33, 30, 23, 21, 17, 16, 15, 14, 13, 12, 11, 10) = 15 + 3 = 18
18 + digcount(18,dig=0,n=10010, 200, 102, 33, 30, 24, 22, 20, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 18 + 9 = 27
27 + digcount(27,dig=0,n=11011, 1000, 123, 102, 43, 36, 33, 30, 27, 25, 23, 21, 1D, 1C, 1B, 1A, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 27 + 7 = 34
34 + digcount(34,dig=0,n=100010, 1021, 202, 114, 54, 46, 42, 37, 34, 31, 2A, 28, 26, 24, 22, 20, 1G, 1F, 1E, 1D, 1C, 1B, 1A, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 34 + 8 = 42
42 + digcount(42,dig=0,n=101010, 1120, 222, 132, 110, 60, 52, 46, 42, 39, 36, 33, 30, 2C, 2A, 28, 26, 24, 22, 20, 1K, 1J, 1I, 1H, 1G, 1F, 1E, 1D, 1C, 1B, 1A, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 42 + 9 = 51

The sequence develops like this:

3, 4, 7, 8, 13, 15, 18, 27, 34, 42, 51, 59, 62, 66, 80, 94, 99, 111, 117, 125, 132, 151, 158, 163, 173, 180, 204, 222, 232, 244, 258, 279, 292, 307, 317, 324, 351, 364, 382, 389, 400, 425, 437, 447, 454, 466, 475, 483, 494, 509, 517, 536, 553, 566, 576, 612, 637, 649, 669, 679, 693, 712, 728, 753, 768, 801, 822, 835, 849, 862, 869, 883, 895, 906, 923, 932, 943, 949, 957, 967, 975, 999, 1011…

If you compare it with the sequence for digit=1, it appears that digcount(n,dig=1,b=2..n) is always larger than digcount(n,dig=0,b=2..n). That is in fact the case, with one exception, when n = 2:

digcount(2,dig=1,n=10) = 1
digcount(2,dig=0,n=10) = 1

When n = 10 (in base ten), there are twice as many ones as zeros:

digcount(10,dig=1,n=1010, 101, 22, 20, 14, 13, 12, 11, 10) = 10
digcount(10,dig=0,n=1010, 101, 22, 20, 14, 13, 12, 11, 10) = 5

As n gets larger, the difference grows dramatically:

digcount(100,dig=1,base=2..n) = 64
digcount(100,dig=0,base=2..n) = 16

digcount(1000,dig=1,base=2..n) = 533
digcount(1000,dig=0,base=2..n) = 25

digcount(10000,dig=1,base=2..n) = 5067
digcount(10000,dig=0,base=2..n) = 49

digcount(100000,dig=1,base=2..n) = 50140
digcount(100000,dig=0,base=2..n) = 73

digcount(1000000,dig=1,base=2..n) = 500408
digcount(1000000,dig=0,base=2..n) = 102

digcount(10000000,dig=1,base=2..n) = 5001032
digcount(10000000,dig=0,base=2..n) = 134

digcount(100000000,dig=1,base=2..n) = 50003137
digcount(100000000,dig=0,base=2..n) = 160

In fact, digcount(n,dig=1,b=2..n) is greater than the digit-count for any other digit: 0, 2, 3, 4, 5… (with the exception n = 2, as shown above). But digit=0 sometimes beats digits >= 2. For example, when n = 18:

digcount(18,dig=0,n=10010, 200, 102, 33, 30, 24, 22, 20, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 9
digcount(18,dig=2,n=10010, 200, 102, 33, 30, 24, 22, 20, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 7
digcount(18,dig=3,n=10010, 200, 102, 33, 30, 24, 22, 20, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 4
digcount(18,dig=4,n=10010, 200, 102, 33, 30, 24, 22, 20, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 2
digcount(18,dig=5,n=10010, 200, 102, 33, 30, 24, 22, 20, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 1

But as n gets larger, digcount(0) will fall permanently behind all these digits. However, digcount(0) will always be greater than some digit d, for the obvious reason that some digits only appear when the base is high enough. For example, the hexadecimal digit A (with the decimal value 10) first appears when n = 21:

digcount(21,dig=A,n=10101, 210, 111, 41, 33, 30, 25, 23, 21, 1A, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 1 digcount(21,dig=0,n=10101, 210, 111, 41, 33, 30, 25, 23, 21, 1A, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10) = 5

There is a general rule for the n at which digit d first appears, n = 2d + 1 (this doesn’t apply when d = 0 or d = 1):

d = 2, n = 5 = 2*2 + 1
digcount(5,dig=2,n=101, 12, 11, 10) = 1

d = 3, n = 7 = 2*3 + 1
digcount(7,dig=3,n=111, 21, 13, 12, 11, 10) = 1

d = 4, n = 9 = 2*4 + 1
digcount(9,dig=4,n=1001, 100, 21, 14, 13, 12, 11, 10) = 1

d = 5, n = 11 = 2*5 + 1
digcount(11,dig=5,n=1011, 102, 23, 21, 15, 14, 13, 12, 11, 10) = 1

It should be apparent, then, that the digit-count for a particular digit starts at 1 and gets gradually higher. The rate at which the digit-count increases is highest for 1 and lowest for 0, with digits 2, 3, 4, 5… in between:

All-Base Graph

Graph for digcount(n,dig=d,b=2..n)


You could think of the graph as a digital rodeo in which these digits compete with each other. 1 is the clear and permanent winner, 0 the gradual loser. Now recall the procedure introduced at the start: n = n + digcount(n,dig=d,b=2..n). When it’s applied to the digits 0 to 5, these are the sequences that appear:

n = n + digcount(n,dig=0,b=2..n)

2, 3, 4, 7, 8, 13, 15, 18, 27, 34, 42, 51, 59, 62, 66, 80, 94, 99, 111, 117, 125, 132, 151, 158, 163, 173, 180, 204, 222, 232, 244, 258, 279, 292, 307, 317, 324, 351, 364, 382, 389, 400, 425, 437, 447, 454, 466, 475, 483, 494, 509, 517, 536, 553, 566, 576, 612, 637, 649, 669, 679, 693, 712, 728, 753, 768, 801, 822, 835, 849, 862, 869, 883, 895, 906, 923, 932, 943, 949, 957, 967, 975, 999, 1011…

n = n + digcount(n,dig=1,b=2..n)

2, 3, 6, 12, 23, 44, 75, 124, 202, 319, 503, 780, 1196, 1824, 2766, 4191, 6338, 9546, 14383, 21656, 32562, 48930, 73494, 110361, 165714, 248733, 373303, 560214, 840602, 1261237, 1892269, 2838926, 4258966, 6389157, 9584585, 14377879…

n = n + digcount(n,dig=2,b=2..n)

5, 6, 8, 12, 16, 22, 31, 37, 48, 60, 76, 94, 115, 138, 173, 213, 257, 311, 374, 454, 542, 664, 790, 935, 1109, 1310, 1552, 1835, 2167, 2548, 2989, 3509, 4120, 4832, 5690, 6687, 7829, 9166, 10727, 12568, 14697, 17182, 20089, 23470, 27425, 32042, 37477, 43768, 51113, 59687, 69705, 81379, 94998, 110910, 129488, 151153, 176429, 205923, 240331, 280490, 327396, 382067, 445858…

n = n + digcount(n,dig=3,b=2..n)

7, 8, 9, 10, 11, 13, 16, 18, 22, 25, 29, 34, 38, 44, 50, 56, 63, 80, 90, 104, 113, 131, 151, 169, 188, 210, 236, 261, 289, 320, 350, 385, 424, 463, 520, 572, 626, 684, 747, 828, 917, 999, 1101, 1210, 1325, 1446, 1577, 1716, 1871, 2040, 2228, 2429, 2642, 2875, 3133, 3413, 3719, 4044, 4402, 4786, 5196, 5645, 6140, 6673, 7257, 7900, 8582, 9315, 10130, 10998, 11942, 12954, 14058…

n = n + digcount(n,dig=4,b=2..n)

9, 10, 11, 12, 13, 14, 16, 18, 20, 23, 25, 28, 34, 41, 44, 52, 61, 67, 74, 85, 92, 102, 113, 121, 134, 148, 170, 184, 208, 229, 253, 269, 287, 306, 324, 356, 386, 410, 439, 469, 501, 531, 565, 604, 662, 703, 742, 794, 845, 895, 953, 1007, 1062, 1127, 1188, 1262, 1336, 1421, 1503, 1585, 1676, 1777, 1876, 2001, 2104, 2249, 2375, 2502, 2636, 2789, 2938, 3102, 3267, 3444, 3644, 3868, 4099…

n = n + digcount(n,dig=5,b=2..n)

11, 12, 13, 14, 15, 16, 17, 19, 21, 23, 26, 28, 29, 33, 37, 41, 48, 50, 55, 60, 64, 67, 72, 75, 83, 91, 96, 102, 107, 118, 123, 129, 137, 151, 159, 171, 180, 192, 202, 211, 224, 233, 251, 268, 280, 296, 310, 324, 338, 355, 380, 401, 430, 455, 488, 511, 536, 562, 584, 607, 638, 664, 692, 718, 748, 778, 807, 838, 874, 911, 951, 993, 1039, 1081, 1124, 1166, 1216, 1264, 1313, 1370, 1432…

Can You Dij It? #1

The most powerful drug in the world is water. The second most powerful is language. But everyone’s on them, so nobody realizes how powerful they are. Well, you could stop drinking water. Then you’d soon realize its hold on the body and the brain.

But you can’t stop using language. Try it. No, the best way to realize the power of language is to learn a new one. Each is a feast with different flavours. New alphabets are good too. The Devanagari alphabet is one of the strongest, but if you want it in refined form, try the phonetic alphabet. It will transform the way you see the world. That’s because it will make you conscious of what you’re already subconsciously aware of.

But “language” is a bigger category that it used to be. Nowadays we have computer languages too. Learning one is another way of transforming the way you see the world. And like natural languages – French, Georgian, Tagalog – they come in different flavours. Pascal is not like Basic is not like C is not like Prolog. But all of them seem to put you in touch with some deeper aspect of reality. Computer languages are like mathemagick: a way to give commands to something immaterial and alter the world by the application of will.

That feeling is at its strongest when you program with machine code, the raw instructions used by the electronics of a computer. At its most fundamental, machine code is simply a series of binary numbers controlling how a computer processes other binary numbers. You can memorize and use those code-numbers, but it’s easier to use something like assembly language, which makes machine-code friendlier for human beings. But it still looks very odd to the uninitiated:

setupnum:
xor ax,ax
xor bp,bp
mov cx,20
clearloop:
mov [di+bp],ax
add bp,2
loop clearloop
ret

That’s almost at the binary bedrock. And machine code is fast. If a fast higher-level language like C feels like flying a Messerschmitt 262, which was a jet-plane, machine-code feels like flying a Messerschmitt 163, which was a rocket-plane. A very fast and very dangerous rocket-plane.

I’m not good at programming languages, least of all machine code, but they are fun to use, quite apart from the way they make you feel as though you’re in touch with a deeper aspect of reality. They do that because the world is mathematics at its most fundamental level, I think, and computer languages are a form of mathematics.

Their mathematical nature is disguised in a lot of what they’re used for, but I like to use them for recreational mathematics. Machine-code is useful when you need a lot of power and speed. For example, look at these digits:

1, 2, 3, 4, 5, 6, 7, 8, 9, 1*, 0*, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 2, 0, 2, 1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 3, 0, 3, 1, 3, 2, 3, 3, 3, 4, 3, 5, 3, 6*, 3*, 7, 3, 8, 3, 9, 4, 0, 4, 1, 4, 2, 4…

They’re what the Online Encyclopedia of Integer Sequences (OEIS) calls “the almost natural numbers” (sequence A007376) and you generate them by writing the standard integers – 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13… – and then separating each digit with a comma: 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, 1, 3… The commas give them some interesting twists. In a list of the standard integers, the 1st entry is 1, the 10th entry is 10, the 213rd entry is 213, the 987,009,381th entry is 987,009,381, and so on.

But that doesn’t work with the almost natural numbers. The 10th entry is 1, not 10, and the 11th entry is 0, not 11. But the 10th entry does begin the sequence (1, 0). I wondered whether that happened again. It does. The 63rd entry in the almost natural numbers begins the sequence (6, 3) – see the asterisks in the sequence above.

This happens again at the 3105th entry, which begins the sequence (3, 1, 0, 5). After that the gaps get bigger, which is where machine code comes in. An ordinary computer-language takes a long time to reach the 89,012,345,679th entry in the almost natural numbers. Machine code is much quicker, which is why I know that the 89,012,345,679th entry begins the sequence (8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9):

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 63, 3105, 43108, 77781, 367573, 13859021, 77911127, 911360799, 35924813703, 74075186297, 89012345679…

And an ordinary computer-language might give you the impression that base 9 doesn’t have numbers like these (apart from the trivial 1, 2, 3, 4, 5, 6, 7, 8, 10…). But it does. 63 in base 10 is a low-hanging fruit: you could find it working by hand. In base 9, the fruit are much higher-hanging. But machine code plucks them with almost ridiculous ease:

1, 2, 3, 4, 5, 6, 7, 8, 10, 570086565, 655267526, 2615038272, 4581347024, 5307541865, 7273850617, 7801234568…

Block n Rule

One of my favourite integer sequences uses the formula n(i) = n(i-1) + digsum(n(i-1)), where digsum(n) sums the digits of n. In base 10, it goes like this:

1, 2, 4, 8, 16, 23, 28, 38, 49, 62, 70, 77, 91, 101, 103, 107, 115, 122, 127, 137, 148, 161, 169, 185, 199, 218, 229, 242, 250, 257, 271, 281, 292, 305, 313, 320, 325, 335, 346, 359, 376, 392, 406, 416, 427, 440, 448, 464, 478, 497, 517, 530, 538, 554, 568, 587, 607, 620, 628, 644, 658, 677, 697, 719, 736, 752, 766, 785, 805, 818, 835, 851, 865, 884, 904, 917, 934, 950, 964, 983, 1003…

Another interesting sequence uses the formula n(i) = n(i-1) + digprod(n(i-1)), where digprod(n) multiplies the digits of n (excluding 0). In base 10, it goes like this:

1, 2, 4, 8, 16, 22, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, 162, 174, 202, 206, 218, 234, 258, 338, 410, 414, 430, 442, 474, 586, 826, 922, 958, 1318, 1342, 1366, 1474, 1586, 1826, 1922, 1958, 2318, 2366, 2582, 2742, 2854, 3174, 3258, 3498, 4362, 4506, 4626, 4914, 5058, 5258, 5658, 6858, 8778, 11914, 11950, 11995…

You can apply these formulae in other bases and it’s trivially obvious that the sequences rise most slowly in base 2, because you’re never summing or multiplying anything but the digit 1. However, there is a sequence for which base 2 is by far the best performer. It has the formula n(i) = n(i-1) + blockmult(n(i-1)), where blockmult(n) counts the lengths of distinct blocks of the same digit, including 0, then multiplies those lengths together. For example:

blockmult(3,b=2) = blockmult(11) = 2
blockmult(28,b=2) = blockmult(11100) = 3 * 2 = 6
blockmult(51,b=2) = blockmult(110011) = 2 * 2 * 2 = 8
blockmult(140,b=2) = blockmult(10001100) = 1 * 3 * 2 * 2 = 12
blockmult(202867,b=2) = blockmult(110001100001110011) = 2 * 3 * 2 * 4 * 3 * 2 * 2 = 576

The full sequence begins like this (numbers are represented in base 10, but the formula is being applied to their representations in binary):

1, 2, 3, 5, 6, 8, 11, 13, 15, 19, 23, 26, 28, 34, 37, 39, 45, 47, 51, 59, 65, 70, 76, 84, 86, 88, 94, 98, 104, 110, 116, 122, 126, 132, 140, 152, 164, 168, 171, 173, 175, 179, 187, 193, 203, 211, 219, 227, 245, 249, 259, 271, 287, 302, 308, 316, 332, 340, 342, 344, 350, 354, 360, 366, 372, 378, 382, 388, 404, 412, 436, 444, 460, 484, 500, 510, 518, 530, 538, 546, 555, 561, 579, 595, 603, 611, 635, 651, 657, 663, 669, 675, 681…

In higher bases, it rises much more slowly. This is base 3:

1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 24, 26, 29, 31, 33, 34, 35, 37, 39, 42, 44, 48, 49, 51, 53, 56, 58, 60, 61, 62, 64, 65, 66, 68, 70, 71, 73, 75, 77, 79, 82, 85, 89, 93, 95, 97, 98, 100, 101, 102, 103, 105, 107, 110, 114, 116, 120, 124, 127, 129, 131, 133, 137, 139, 141, 142, 143, 145, 146, 147, 149, 151, 152, 154, 156, 158, 160, 163…

And this is base 10:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90…

Note how, in bases 3 and 10, blockmult(n) often equals 1. In base 3, the sequence contains [141, 142, 143, 145]:

blockmult(141,b=3) = blockmult(12020) = 1 * 1 * 1 * 1 = 1
blockmult(142,b=3) = blockmult(12021) = 1 * 1 * 1 * 1 = 1
blockmult(143,b=3) = blockmult(12022) = 1 * 1 * 1 * 2 = 2

The formula also returns 1 much further along the sequence in base 3. For example, the 573809th number in the sequence, or n(573809), is 5775037 and blockmult(5775037) = blockmult(101212101212021) = 1^15 = 1. But in base 2, blockmult(n) = 1 is very rare. It happens three times at the beginning of the sequence:

1, 2, 3, 5, 6, 8, 11…

After that, I haven’t found any more examples of blockmult(n) = 1, although blockmult(n) = 2 occurs regularly. For example,

blockmult(n(100723)) = blockmult(44739241) = blockmult(10101010101010101010101001) = 2
blockmult(n(100724)) = blockmult(44739243) = blockmult(10101010101010101010101011) = 2
blockmult(n(100725)) = blockmult(44739245) = blockmult(10101010101010101010101101) = 2

Does the sequence in base 2 return another example of blockmult(n) = 1? The odds seem against it. For any given number of digits in base 2, there is only one number for which blockmult(n) = 1. For example: 1, 10, 101, 1010, 10101, 101010, 1010101… As the sequence increases, the percentage of these numbers becomes smaller and smaller. But the sequence is infinite, so who knows what happens in the end? Perhaps blockmult(n) = 1 occurs infinitely often.

Playing the Double Base

Here’s some mathematical nonsense:

10 > 12
100 > 122
1000 > 1222

How can 1000 > 1222? Well, it makes perfect sense in what you might call a double base. In this base, every number is identified by a unique string of digits, but the strings don’t behave as they do in a standard base.

To see how this double base works, first look at 9 in standard base 2. To generate the binary digits from right to left, you follow the procedure x mod 2 and x = x div 2, where (x mod 2) returns the remainder when x is divided by 2 and (x div 2) divides x by 2 and discards the remainder:

9 mod 2 = 1 → ...1
9 div 2 = 4
4 mod 2 = 0 → ..01
4 div 2 = 2
2 mod 2 = 0 → .001
2 div 2 = 1
1 mod 2 = 1 → 1001

So 9[b=10] = 1001[b=2]. To adapt the procedure to base 3, simply use x mod 3 and x = x div 3:

32 mod 3 = 2 → ...2
32 div 3 = 10
10 mod 3 = 1 → ..12
10 div 3 = 3
3 mod 3 = 0 → .012
3 div 3 = 1
1 mod 3 = 1 → 1012

So 32[b=10] = 1012[b=3].

But what happens if you mix bases and use (x mod 3) and (x div 2), like this?:

2 mod 3 = 2 → .2
2 div 2 = 1
1 mod 3 = 1 → 12

3 mod 3 = 0 → .0
3 div 2 = 1
1 mod 3 = 1 → 10

So 10 > 12, i.e. 10[b=3,2] > 12[b=3,2].

5 mod 3 = 2 → ..2
5 div 2 = 2
2 mod 3 = 2 → .22
2 div 2 = 1
1 mod 3 = 1 → 122

6 mod 3 = 0 → ..0
6 div 2 = 3
3 mod 3 = 0 → .00
3 div 2 = 1
1 mod 3 = 1 → 100

So 100 > 122.

11 mod 3 = 2 → ...2
11 div 2 = 5
5 mod 3 = 2 → ..22
5 div 2 = 2
2 mod 3 = 2 → .222
2 div 2 = 1
1 mod 3 = 1 → 1222

12 mod 3 = 0 → …0
12 div 2 = 6
6 mod 3 = 0 → ..00
6 div 2 = 3
3 mod 3 = 0 → .000
3 div 2 = 1
1 mod 3 = 1 → 1000

And 1000 > 1222. Here are numbers 1 to 32 in this double base:

1 = 1
12 = 2
10 = 3
121 = 4
122 = 5
100 = 6
101 = 7
1212 = 8
1210 = 9
1221 = 10
1222 = 11
1000 = 12
1001 = 13
1012 = 14
1010 = 15
12121 = 16
12122 = 17
12100 = 18
12101 = 19
12212 = 20
12210 = 21
12221 = 22
12222 = 23
10000 = 24
10001 = 25
10012 = 26
10010 = 27
10121 = 28
10122 = 29
10100 = 30
10101 = 31
121212 = 32

Given a number represented in this mixed base, how do you extract the underlying n? Suppose the number takes the form n = (digit[1]..digit[di]), where digit[1] is the first and leftmost digit and digit[di] the final and rightmost digit. Then this algorithm will extract n:

n = 1
for i = 2 to di
..n = n * 2
..while n mod 3 ≠ digit[i]
....n = n + 1
..endwhile
next i
print n

For example, suppose n = 12212[b=3,2]. Then di = 5 and the algorithm will work like this:

n = 1
n = n * 2 = 2.
2 mod 3 = 2 = digit[2]
2 * 2 = 4
4 mod 3 = 1 ≠ digit[3]
5 mod 3 = 2 = digit[3]
5 * 2 = 10
10 mod 3 = 1 = digit[4]
10 * 2 = 20
20 mod 3 = 2 = digit[5]

Therefore 12212[b=3,2] = 20[b=10].

Now try some more mathematical nonsense:

21 > 100
111 > 1,000
1,001 > 10,000
10,001 > 100,000

How can numbers with d digits be greater than numbers with d+1 digits? Easily. In this incremental base, the base adjusts itself as the digits are generated, like this:

5 mod 2 = 1 → .1
5 div 2 = 2
2 mod (2 + 1) = 2 mod 3 = 2 → 21

The first digit generated is 1, so the base increases to (2 + 1) = 3 for the second digit. Compare the procedure when n = 4:

4 mod 2 = 0 → ..0
4 div 2 = 2
2 mod 2 = 0 → .00
2 div 2 = 1
1 mod 2 = 1 → 100

So 21 > 100, because 4 is a power of 2 and all the digits generated by (x mod 2) are 0 except the final and leftmost. 2 + 0 = 2. Now try n = 33:

33 mod 2 = 1 → ...1
33 div 2 = 16
16 mod (2+1) = 16 mod 3 = 1 → ..11
16 div 3 = 5
5 mod (3+1) = 5 mod 4 = 1 → .111
5 div 4 = 1
1 mod (4+1) = 1 mod 5 = 1.

33[b=10] = 1111[b=2,3,4,5].

Here are numbers 1 to 60 in this incremental base (note how 21 > 100, 111 > 1000, 1001 > 10000 and 10001 > 100000):

1 = 1
10 = 2
11 = 3
100 = 4*
21 = 5*
110 = 6
101 = 7
1000 = 8*
111 = 9*
210 = 10
121 = 11
1100 = 12
201 = 13
1010 = 14
211 = 15
10000 = 16*
221 = 17
1110 = 18
1001 = 19*
2100 = 20
311 = 21
1210 = 22
321 = 23
11000 = 24
1101 = 25
2010 = 26
1011 = 27
10100 = 28
421 = 29
2110 = 30
1201 = 31
100000 = 32*
1111 = 33
2210 = 34
1021 = 35
11100 = 36
2001 = 37
10010 = 38
1211 = 39
21000 = 40
1121 = 41
3110 = 42
2101 = 43
12100 = 44
1311 = 45
3210 = 46
1221 = 47
110000 = 48
2201 = 49
11010 = 50
2011 = 51
20100 = 52
1321 = 53
10110 = 54
10001 = 55*
101000 = 56
2111 = 57
4210 = 58
1421 = 59
21100 = 60

And here are numbers 256 to 270 (Note how 8,421 > 202,100 > 100,000,000):

100000000 = 256*
11221 = 257
101110 = 258
32101 = 259
202100 = 260*
13311 = 261
41210 = 262
10321 = 263
1111000 = 264
24201 = 265
131010 = 266
23011 = 267
320100 = 268
8421 = 269*
52110 = 270

Extracting n from a number represented in this incremental base is trickier than for the double base using (x mod 3) and (x div 2). To see how to do it, examine 11221[b=incremental]. The fifth and rightmost digit is 1, so the base increases to (2 + 1) = 3 for the fourth digit, which is 2. The base increases to (3 + 2) = 5 for the third digit, which is 2 again. The base increases to (5 + 2) = 7 for the second digit, 1. But the first and rightmost digit, 1, represents (x div 7) mod (7 + 1 = 8). So n can be extracted like this:

digit[1] * 7 = 1 * 7 = 7
7 mod 7 = 0 ≠ digit[2]
8 mod 7 = 1 = digit[2]
8 * 5 = 40
40 mod 5 = 0 ≠ digit[3]
41 mod 5 = 1 ≠ digit[3]
42 mod 5 = 2 = digit[3]
42 * 3 = 126
126 mod 3 = 0 ≠ digit[4]
127 mod 3 = 1 ≠ digit[4]
128 mod 3 = 2 = digit[4]
128 * 2 = 256
256 mod 2 = 0 ≠ digit[5]
257 mod 2 = 1 = digit[5]

So 11221[b=8,7,5,3,2] = 257[b=10].

Now try 8421[b=incremental]. The fourth and rightmost digit is 1, so the base increases to (2 + 1) = 3 for the third digit, which is 2. The base increases to (3 + 2) = 5 for the second digit, 4. But the first and rightmost digit, 8, represents (x div 5) mod (5 + 4 = 9). So n can be extracted like this:

digit[1] * 5 = 8 * 5 = 40
40 mod 5 = 0 ≠ digit[2]
41 mod 5 = 1 ≠ digit[2]
42 mod 5 = 2 ≠ digit[2]
43 mod 5 = 3 ≠ digit[2]
44 mod 5 = 4 = digit[2]
44 * 3 = 132
132 mod 3 = 0 ≠ digit[3]
133 mod 3 = 1 ≠ digit[3]
134 mod 3 = 2 = digit[3]
134 * 2 = 268
268 mod 2 = 0 ≠ digit[4]
269 mod 2 = 1 = digit[4]

So 8421[b=9,5,3,2] = 269[b=10].

Narcischism

What have bits to do with splits? A lot. Suppose you take the digits 12345, split them in all possible ways, then sum the results, like this:

12345 → (1234 + 5) + (123 + 45) + (123 + 4 + 5) + (12 + 345) + (12 + 34 + 5) + (12 + 3 + 45) + (12 + 3 + 4 + 5) + (1 + 2345) + (1 + 234 + 5) + (1 + 23 + 45) + (1 + 23 + 4 + 5) + (1 + 2 + 345) + (1 + 2 + 34 + 5) + (1 + 2 + 3 + 45) + (1 + 2 + 3 + 4 + 5) = 5175.

That’s a sum in base 10, but base 2 is at work below the surface, because each set of numbers is the answer to a series of binary questions: split or not? There are four possible places to split the digits 12345: after the 1, after the 2, after the 3 and after the 4. In (1 + 2 + 3 + 4 + 5), the binary question “Split or not?” is answered SPLIT every time. In (1234 + 5) and (1 + 2345) it’s answered SPLIT only once.

So the splits are governed by a four-digit binary number ranging from 0001 to 1111. When the binary digit is 1, split; when the binary digit is 0, don’t split. In binary, 0001 to 1111 = 01 to 15 in base 10 = 2^4-1. That’s for a five-digit number, so the four-digit 1234 will have 2^3-1 = 7 sets of sums:

1234 → (123 + 4) + (12 + 34) + (12 + 3 + 4) + (1 + 234) + (1 + 23 + 4) + 110 (1 + 2 + 34) + (1 + 2 + 3 + 4) = 502.

And the six-digit number 123456 will have 2^5-1 = 31 sets of sums. By now, an exciting question may have occurred to some readers. Does any number in base 10 equal the sum of all possible numbers formed by splitting its digits?

The exciting answer is: 0. In other words: No. To see why not, examine a quick way of summing the split-bits of 123,456,789, with nine digits. The long way is to find all possible sets of split-bits. There are 2^8-1 = 255 of them. The quick way is to sum these equations:

1 * 128 + 10 * 64 + 100 * 32 + 1000 * 16 + 10000 * 8 + 100000 * 4 + 1000000 * 2 + 10000000 * 1
2 * 128 + 20 * 64 + 200 * 32 + 2000 * 16 + 20000 * 8 + 200000 * 4 + 2000000 * 2 + 20000000 * 1
3 * 128 + 30 * 64 + 300 * 32 + 3000 * 16 + 30000 * 8 + 300000 * 4 + 3000000 * 3
4 * 128 + 40 * 64 + 400 * 32 + 4000 * 16 + 40000 * 8 + 400000 * 7
5 * 128 + 50 * 64 + 500 * 32 + 5000 * 16 + 50000 * 15
6 * 128 + 60 * 64 + 600 * 32 + 6000 * 31
7 * 128 + 70 * 64 + 700 * 63
8 * 128 + 80 * 127
9 * 255

Sum = 52,322,283.

52,322,283 has eight digits. If you use the same formula for the nine-digit number 999,999,999, the sum is 265,621,761, which has nine digits but is far smaller than 999,999,999. If you adapt the formula for the twenty-digit 19,999,999,999,999,999,999 (starting with 1), the split-bit sum is 16,562,499,999,987,400,705. In base 10, as far as I can see, numbers increase too fast and digit-lengths too slowly for the binary governing the split-sums to keep up. That’s also true in base 9 and base 8:

Num = 18,888,888,888,888,888,888 (b=9)
Sum = 16,714,201,578,038,328,760

Num = 17,777,777,777,777,777,777 (b=8)
Sum = 17,070,707,070,625,000,001

So what about base 7? Do the numbers increase slowly enough and the digit-lengths fast enough for the binary to keep up? The answer is: 1. In base 7, this twenty-digit number is actually smaller than its split-bit sum:

Num = 16,666,666,666,666,666,666 (b=7)
Sum = 20,363,036,303,404,141,363

And if you search below that, you can find a number that is equal to its split-bit sum:

166512 → (1 + 6 + 6 + 5 + 1 + 2) + (16 + 6 + 5 + 1 + 2) + (1 + 66 + 5 + 1 + 2) + (166 + 5 + 1 + 2) + (1 + 6 + 65 + 1 + 2) + (16 + 65 + 1 + 2) + (1 + 665 + 1 + 2) + (1665 + 1 + 2) + (1 + 6 + 6 + 51 + 2) + (16 + 6 + 51 + 2) + (1 + 66 + 51 + 2) + (166 + 51 + 2) + (1 + 6 + 651 + 2) + (16 + 651 + 2) + (1 + 6651 + 2) + (16651 + 2) + (1 + 6 + 6 + 5 + 12) + (16 + 6 + 5 + 12) + (1 + 66 + 5 + 12) + (166 + 5 + 12) + (1 + 6 + 65 + 12) + (16 + 65 + 12) + (1 + 665 + 12) + (1665 + 12) + (1 + 6 + 6 + 512) + (16 + 6 + 512) + (1 + 66 + 512) + (166 + 512) + (1 + 6 + 6512) + (16 + 6512) + (1 + 66512) = 166512[b=7] = 33525[b=10].

So 33525 in base 7 is what might be called a narcischist: it can gaze into the split-bits of its own digits and see itself gazing back. In base 6, 1940 is a narcischist:

12552 → (1 + 2 + 5 + 5 + 2) + (12 + 5 + 5 + 2) + (1 + 25 + 5 + 2) + (125 + 5 + 2) + (1 + 2 + 55 + 2) + (12 + 55 + 2) + (1 + 255 + 2) + (1255 + 2) + (1 + 2 + 5+ 52) + (12 + 5 + 52) + (1 + 25 + 52) + (125 + 52) + (1 + 2 + 552) + (12 + 552) + (1 + 2552) = 12552[b=6] = 1940[b=10].

In base 5, 4074 is a narcischist:

112244 → (1 + 1 + 2 + 2 + 4 + 4) + (11 + 2 + 2 + 4 + 4) + (1 + 12 + 2 + 4 + 4) + (112 + 2 + 4 + 4) + (1 + 1 + 22 + 4 + 4) + (11 + 22 + 4 + 4) + (1 + 122 + 4 + 4) + (1122 + 4 + 4) + (1 + 1 + 2 + 24 + 4) + (11 + 2 + 24 + 4) + (1 + 12 + 24 + 4) + (112 + 24 + 4) + (1 + 1 + 224 + 4) + (11 + 224 + 4) + (1 + 1224 + 4) + (11224 + 4) + (1 + 1 + 2 + 2 + 44) + (11 + 2 + 2 + 44) + (1 + 12 + 2 + 44) + (112 + 2 + 44) + (1 + 1 + 22 + 44) + (11 + 22 + 44) + (1 + 122 + 44) + (1122 + 44) + (1 + 1 + 2 + 244) + (11 + 2 + 244) + (1 + 12 + 244) + (112 + 244) + (1 + 1 + 2244) + (11 + 2244) + (1 + 12244) = 112244[b=5] = 4074.

And in base 4, 27 is:

123 → (1 + 2 + 3) + (12 + 3) + (1 + 23) = 123[b=4] = 27.

And in base 3, 13 and 26 are:

111 → (1 + 1 + 1) + (11 + 1) + (1 + 11) = 111[b=3] = 13.

222 → (2 + 2 + 2) + (22 + 2) + (2 + 22) = 222[b=3] = 26.

There are many more narcischists in all these bases, even if you exclude numbers with zeroes in them, like these in base 4:

1022 → (1 + 0 + 2 + 2) + (10 + 2 + 2) + (1 + 02 + 2) + (102 + 2) + (1 + 0 + 22) + (10 + 22) + (1 + 022) = 1022[b=4] = 74.

1030 → (1 + 0 + 3 + 0) + (10 + 3 + 0) + (1 + 03 + 0) + (103 + 0) + (1 + 0 + 30) + (10 + 30) + (1 + 030) = 1030[b=4] = 76.

1120 → (1 + 1 + 2 + 0) + (11 + 2 + 0) + (1 + 12 + 0) + (112 + 0) + (1 + 1 + 20) + (11 + 20) + (1 + 120) = 1120[b=4] = 88.

Summus

I’m interested in digit-sums and in palindromic numbers. Looking at one, I found the other. It started like this: 9^2 = 81 and 9 = 8 + 1, so digitsum(9^1) = digitsum(9^2). I wondered how long such a sequence of powers could be (excluding powers of 10). I quickly found that the digit-sum of 468 is equal to the digit-sum of its square and cube:

digsum(468) = digsum(219024) = digsum(102503232)

But I couldn’t find any longer sequence, although plenty of other numbers are similar to 468:

digsum(585) = digsum(342225) = digsum(200201625)
digsum(4680) = digsum(21902400) = digsum(102503232000)
digsum(5850) = digsum(34222500) = digsum(200201625000)
digsum(5851) = digsum(34234201) = digsum(200304310051)
digsum(5868) = digsum(34433424) = digsum(202055332032)
digsum(28845) = digsum(832034025) = digsum(24000021451125) […]
digsum(589680) = digsum(347722502400) = digsum(205045005215232000)

What about other bases? First came this sequence:

digsum(2) = digsum(11) (base = 3) (highest power = 2)

Then these:

digsum(4) = digsum(22) = digsum(121) (b=7) (highest power = 3)
digsum(8) = digsum(44) = digsum(242) = digsum(1331) (b=15) (hp=4)
digsum([16]) = digsum(88) = digsum(484) = digsum(2662) = digsum(14641) (b=31) (hp=5)

The pattern continues (a number between square brackets represents a single digit in the base):

digsum([32]) = digsum([16][16]) = digsum(8[16]8) = digsum(4[12][12]4) = digsum(28[12]82) = digsum(15[10][10]51) (b=63) (hp=6)
digsum([64]) = digsum([32][32]) = digsum([16][32][16]) = digsum(8[24][24]8) = digsum(4[16][24][16]4) = digsum(2[10][20][20][10]2) = digsum(16[15][20][15]61) (b=127) (hp=7)
digsum([128]) = digsum([64][64]) = digsum([32][64][32]) = digsum([16][48][48][16]) = digsum(8[32][48][32]8) = digsum(4[20][40][40][20]4) = digsum(2[12][30][40][30][12]2) = digsum(17[21][35][35][21]71) (b=255) (hp=8)
digsum([256]) = digsum([128][128]) = digsum([64][128][64]) = digsum([32][96][96][32]) = digsum([16][64][96][64][16]) = digsum(8[40][80][80][40]8) = digsum(4[24][60][80][60][24]4) = digsum(2[14][42][70][70][42][14]2) = digsum(18[28][56][70][56][28]81) (b=511) (hp=9)

After this, I looked at sequences in which n(i) = n(i-1) + digitsum(n(i-1)). How long could digitsum(n(i)) be greater than or equal to digitsum(n(i-1))? In base 10, I found these sequences:

1 (digitsum=1) → 2 → 4 → 8 → 16 (sum=7) (count=4) (base=10)
9 → 18 (sum=9) → 27 (s=9) → 36 (s=9) → 45 (s=9) → 54 (s=9) → 63 (s=9) → 72 (s=9) → 81 (s=9) → 90 (s=9) → 99 (s=18) → 117 (s=9) (c=11) (b=10)
801 (s=9) → 810 (s=9) → 819 (s=18) → 837 (s=18) → 855 (s=18) → 873 (s=18) → 891 (s=18) → 909 (s=18) → 927 (s=18) → 945 (s=18) → 963 (s=18) → 981 (s=18) → 999 (s=27) → 1026 (s=9) (c=13)

Base 2 does better:

1 → 10 (s=1) → 11 (s=2) → 101 (s=2) → 111 (s=3) → 1010 (s=2) (c=5) (b=2)
16 = 10000 (s=1) → 10001 (s=2) → 10011 (s=3) → 10110 (s=3) → 11001 (s=3) → 11100 (s=3) → 11111 (s=5) → 100100 (s=2) (c=7) (b=2)
962 = 1111000010 (s=5) → 1111000111 (s=7) → 1111001110 (s=7) → 1111010101 (s=7) → 1111011100 (s=7) → 1111100011 (s=7) → 1111101010 (s=7) → 1111110001 (s=7) → 1111111000 (s=7) → 1111111111 (s=10) → 10000001001 (s=3) (c=10) (b=2)
524047 = 1111111111100001111 (s=15) → 1111111111100011110 (s=15) → 1111111111100101101 (s=15) → 1111111111100111100 (s=15) → 1111111111101001011 (s=15) → 1111111111101011010 (s=15) → 1111111111101101001(s=15) → 1111111111101111000 (s=15) → 1111111111110000111 (s=15) → 1111111111110010110 (s=15) → 1111111111110100101 (s=15) → 1111111111110110100 (s=15) → 1111111111111000011 (s=15) → 1111111111111010010 (s=15) → 1111111111111100001 (s=15) → 1111111111111110000 (s=15) → 1111111111111111111 (s=19) → 10000000000000010010 (s=3) (c=17) (b=2)

The best sequence I found in base 3 is shorter than in base 10, but there are more sequences:

1 → 2 → 11 (s=2) → 20 (s=2) → 22 (s=4) → 110 (s=2) (c=5) (b=3)
31 = 1011 (s=3) → 1021 (s=4) → 1102 (s=4) → 1120 (s=4) → 1201 (s=4) → 1212 (s=6) → 2002 (s=4) (c=6) (b=3)
54 = 2000 (s=2) → 2002 (s=4) → 2020 (s=4) → 2101 (s=4) → 2112 (s=6) → 2202 (s=6) → 2222 (s=8) → 10021(s=4) (c=7) (b=3)
432 = 121000 (s=4) → 121011 (s=6) → 121101 (s=6) → 121121 (s=8) → 121220 (s=8) → 122012 (s=8) → 122111 (s=8) → 122210 (s=8) → 200002 (s=4) (c=8) (b=3)
648 = 220000 (s=4) → 220011 (s=6) → 220101 (s=6) → 220121 (s=8) → 220220 (s=8) → 221012 (s=8) → 221111 (s=8) → 221210 (s=8) → 222002 (s=8) → 222101 (s=8) → 222200 (s=8) → 222222 (s=12) → 1000102 (s=4) (c=12) (b=3)

And what about sequences in which digitsum(n(i)) is always greater than digitsum(n(i-1))? Base 10 is disappointing:

1 → 2 → 4 → 8 → 16 (sum=7) (count=4) (base=10)
50 (s=5) → 55 (s=10) → 65 (s=11) → 76 (s=13) → 89 (s=17) → 106 (s=7) (c=5) (b=10)

Some other bases do better:

2 = 10 (s=1) → 11 (s=2) → 101 (s=2) (c=2) (b=2)
4 = 100 (s=1) → 101 (s=2) → 111 (s=3) → 1010 (s=2) (c=3) (b=2)
240 = 11110000 (s=4) → 11110100 (s=5) → 11111001 (s=6) → 11111111 (s=8) → 100000111 (s=4) (c=4) (b=2)

1 → 2 → 11 (s=2) (c=2) (b=3)
19 = 201 (s=3) → 211 (s=4) → 222 (s=6) → 1012 (s=4) (c=3) (b=3)
58999 = 2222221011 (s=15) → 2222221201 (s=16) → 2222222022 (s=18) → 2222222222 (s=20) → 10000000201 (s=4) (c=4) (b=3)

1 → 2 → 10 (s=1) (c=2) (b=4)
4 = 10 (s=1) → 11 (s=2) → 13 (s=4) → 23 (s=5) → 100 (s=1) (c=4) (b=4)
977 = 33101 (s=8) → 33121 (s=10) → 33203 (s=11) → 33232 (s=13) → 33323 (s=14) → 100021 (s=4) (c=5) (b=4)

1 → 2 → 4 → 13 (s=4) (c=3) (b=5)
105 = 410 (s=5) → 420 (s=6) → 431 (s=8) → 444 (s=12) → 1021 (s=4) (c=4) (b=5)

1 → 2 → 4 → 12 (s=3) (c=3) (b=6)
13 = 21 (s=3) → 24 (s=6) → 34 (s=7) → 45 (s=9) → 102 (s=3) (c=4) (b=6)
396 = 1500 (s=6) → 1510 (s=7) → 1521 (s=9) → 1534 (s=13) → 1555 (s=16) → 2023 (s=7) (c=5) (b=6)

1 → 2 → 4 → 11 (s=2) (c=3) (b=7)
121 = 232 (s=7) → 242 (s=8) → 253 (s=10) → 266 (s=14) → 316 (s=10) (c=4) (b=7)
205 = 412 (s=7) → 422 (s=8) → 433 (s=10) → 446 (s=14) → 466 (s=16) → 521 (s=8) (c=5) (b=7)

1 → 2 → 4 → 10 (s=1) (c=3) (b=8)
8 = 10 (s=1) → 11 (s=2) → 13 (s=4) → 17 (s=8) → 27 (s=9) → 40 (s=4) (c=5) (b=8)
323 = 503 (s=8) → 513 (s=9) → 524 (s=11) → 537 (s=15) → 556 (s=16) → 576 (s=18) → 620 (s=8) (c=6) (b=8)

1 → 2 → 4 → 8 → 17 (s=8) (c=4) (b=9)
6481 = 8801 (s=17) → 8820 (s=18) → 8840 (s=20) → 8862 (s=24) → 8888 (s=32) → 10034 (s=8) (c=5) (b=9)

1 → 2 → 4 → 8 → 16 (s=7) (c=4) (b=10)
50 (s=5) → 55 (s=10) → 65 (s=11) → 76 (s=13) → 89 (s=17) → 106 (s=7) (c=5) (b=10)

1 → 2 → 4 → 8 → 15 (s=6) (c=4) (b=11)
1013 = 841 (s=13) → 853 (s=16) → 868 (s=22) → 888 (s=24) → 8[10][10] (s=28) → 925 (s=16) (c=5) (b=11)

1 → 2 → 4 → 8 → 14 (s=5) (c=4) (b=12)
25 = 21 (s=3) → 24 (s=6) → 2[10] (s=12) → 3[10] (s=13) → 4[11] (s=15) → 62 (s=8) (c=5) (b=12)
1191 = 833 (s=14) → 845 (s=17) → 85[10] (s=23) → 879 (s=24) → 899 (s=26) → 8[11][11] (s=30) → 925 (s=16) (c=6) (b=12)

1 → 2 → 4 → 8 → 13 (s=4) (c=4) (b=13)
781 = 481 (s=13) → 491 (s=14) → 4[10]2 (s=16) → 4[11]5 (s=20) → 4[12][12] (s=28) → 521 (s=8) (c=5) (b=13)
19621 = 8[12]14 (s=25) → 8[12]33 (s=26) → 8[12]53 (s=28) → 8[12]75 (s=32) → 8[12]9[11] (s=40) → 8[12][12][12] (s=44) → 9034 (s=16) (c=6) (b=13)

1 → 2 → 4 → 8 → 12 (s=3) (c=4) (b=14)
72 = 52 (s=7) → 59 (s=14) → 69 (s=15) → 7[10] (s=17) → 8[13] (s=21) → [10]6 (s=16) (c=5) (b=14)
1275 = 671 (s=14) → 681 (s=15) → 692 (s=17) → 6[10]5 (s=21) → 6[11][12] (s=29) → 6[13][13] (s=32) → 723 (s=12) (c=6) (b=14)
19026 = 6[13]10 (s=20) → 6[13]26 (s=27) → 6[13]45 (s=28) → 6[13]65 (s=30) → 6[13]87 (s=34) → 6[13][10][13] (s=42) → 6[13][13][13] (s=45) → 7032 (s=12) (c=7) (b=14)

1 → 2 → 4 → 8 → 11 (s=2) (c=4) (b=15)
603 = 2[10]3 (s=15) → 2[11]3 (s=16) → 2[12]4 (s=18) → 2[13]7 (s=22) → 2[14][14] (s=30) → 31[14] (s=18) (c=5) (b=15)
1023 = 483 (s=15) → 493 (s=16) → 4[10]4 (s=18) → 4[11]7 (s=22) → 4[12][14] (s=30) → 4[14][14] (s=32) → 521 (s=8) (c=6) (b=15)
1891 = 861 (s=15) → 871 (s=16) → 882 (s=18) → 895 (s=22) → 8[10][12] (s=30) → 8[12][12] (s=32) → 8[14][14] (s=36) → 925 (s=16) (c=7) (b=15)

1 → 2 → 4 → 8 → 10 (s=1) (c=4) (b=16)
16 = 10 (s=1) → 11 (s=2) → 13 (s=4) → 17 (s=8) → 1[15] (s=16) → 2[15] (s=17) → 40 (s=4) (c=6) (b=16)
1396 = 574 (s=16) → 584 (s=17) → 595 (s=19) → 5[10]8 (s=23) → 5[11][15] (s=31) → 5[13][14] (s=32) → 5[15][14] (s=34) → 620 (s=8) (c=7) (b=16)
2131 = 853 (s=16) → 863 (s=17) → 874 (s=19) → 887 (s=23) → 89[14] (s=31) → 8[11][13] (s=32) → 8[13][13] (s=34) → 8[15][15] (s=38) → 925 (s=16) (c=8) (b=16)

1 → 2 → 4 → 8 → [16] (s=16) → 1[15] (s=16) (c=5) (b=17)

1 → 2 → 4 → 8 → [16] (s=16) → 1[14] (s=15) (c=5) (b=18)
5330 = [16]82 (s=26) → [16]9[10] (s=35) → [16][11]9 (s=36) → [16][13]9 (s=38) → [16][15][11] (s=42) → [16][17][17] (s=50) → [17]2[13] (s=32) (c=6) (b=18)

1 → 2 → 4 → 8 → [16] (s=16) → 1[13] (s=14) (c=5) (b=19)
116339 = [16][18]52 (s=41) → [16][18]75 (s=46) → [16][18]9[13] (s=56) → [16][18][12][12] (s=58) → [16][18][15][13] (s=62) → [16][18][18][18] (s=70) → [17]03[12] (s=32) (c=6) (b=19)

1 → 2 → 4 → 8 → [16] (s=16) → 1[12] (s=13) (c=5) (b=20)
100 = 50 (s=5) → 55 (s=10) → 5[15] (s=20) → 6[15] (s=21) → 7[16] (s=23) → 8[19] (s=27) → [10]6 (s=16) (c=6) (b=20)
135665 = [16][19]35 (s=43) → [16][19]58 (s=48) → [16][19]7[16] (s=58) → [16][19][10][14] (s=59) → [16][19][13][13] (s=61) → [16][19][16][14] (s=65) → [16][19][19][19] (s=73) → [17]03[12] (s=32) (c=7) (b=20)