Performativizing Papyrocentricity #42

Papyrocentric Performativity Presents:

Feats for the EyesDrawn from Paradise: The discovery, art and natural history of the birds of paradise, David Attenborough and Errol Fuller (Collins 2012)

Heart of the MatherChaotic Fishponds and Mirror Universes: the maths that governs our world, Richard Elwes (Quercus 2013)

BergblumenEnchanting Alpine Flowers, Alfred Pohler, trans. Jacqueline Schweighofer

Or Read a Review at Random: RaRaR

Ave Aves!

Front cover of Collins Bird Guide by Lars SvenssonCollins Bird Guide: The Most Complete Guide to the Birds of Britain and Europe (second edition), text and maps by Lars Svensson, illustrations and captions by Killian Mullarney and Dan Zetterström, with a significant contribution by Peter J. Grant, translated by David Christie and Lars Svensson (HarperCollins, 2009)

A literate musician can read a score and hear a symphony in his head. I wonder whether the mega-minds of the future will be able to do something similar with genomes: read a DNA recipe and see the animal or plant cooked from it. The mega-minds will need to know about the oven, that is, the womb, egg or seed, but then musicians need to know about instruments, not just notes. The code can’t exist in isolation: it needs a world to be realized in and a musician’s mind can mimic that world.

But mega-minds aren’t here yet for genetics, so we have to use books like this to see the product of DNA-recipes. Collins Bird Guide is effectively a genetic cook-book or genomic score, but we don’t see the naked genes, just the dish or symphony cooked or played from them. Lars Svensson describes thousands of birds of all shapes, sizes, colours, diets and habitats, from the huge golden eagle, Aquila chrysaetos, which can carry off a lamb, to the tiny goldcrest, Regulus regulus, which isn’t much bigger than a bumblebee. But these two, like all other birds, have a common ancestor: when you see a bird sitting in a tree, it is also, metaphorically speaking, sitting in a genetic tree whose twigs, branches and boughs spring from a single trunk. One DNA-recipe has turned into many under the influence of natural and sexual selection.

Birds, which often come in very distinct male and female forms, offer lots of good examples of sexual selection. One of the most spectacular examples isn’t native to the region covered by the book, but it has been introduced here. And so there are pleasant surprises in store for some European ornithophiles. I once came across a wild-living golden pheasant, Chrysolophus pictus, early one morning in a park in northern England. I thought for a moment that I was hallucinating: the bird has a crest of spun gold, a scarlet breast and belly, and an orange/black “nuchal cape”, or neck-feathers, that “can be raised like a fan when displaying” (“Partridges & Pheasants”, pg. 59). It also has yellow legs, blue wings and a long, attractively patterned tail. “Unmistakable!” notes the book.

That’s true of the ♂, at least. The ♀, whose eyes and brain are responsible for the spectacular appearance of the ♂, is undistinguished and similar to the ♀ of Lady Amherst’s pheasant, Chrysolophus amherstiae, whose ♂ is again “Unmistakable!”, thanks to the sexual selection of its ♀. These closely related species are native to eastern Asia and “occasionally hybridize” in Britain (pg. 59). In other words, their common ancestor was fairly recent and their DNA recipes can still work together. But these hybridizations may also be a function of small populations and restricted habitat in Britain. “Function” is the operative word: birds, like all other forms of life, are mechanisms with inputs, throughputs and outputs. For a pheasant, some of the input is sense-data. The throughput is the processing of sense-data in the brain. The output is behaviour: for example, mating with a less-than-ideal partner under the restricted conditions of Britain.

All this can be modelled mathematically, but in the widest and deepest sense it already is mathematical: the human invention of mathematics, with a small “m”, is a symbolic representation of Mathematics with a big “M”. Mathematical symbols represent entities and operations and are manipulated according to logical rules. This mimics the inter-play of entities in the real world, which are subject to the rules of logic implicit in physics and chemistry. Human mathematics is fallible, albeit self-correcting. The mathematics underlying reality realizes the pipe-dreams of the papacy and is infallible, in the sense that it never disobeys the rules by which it is governed.

But this infallible mathematics can fail the entities for whom it operates: birds can die young and fail to reproduce or have fewer offspring than their competitors. But this is the fuel of a larger mechanism: evolution, which is a mathematical process. Genes mutate and vary in frequency under the influence of natural and sexual selection, inter alia. Birds offer more good examples of the effects, because they have wings, beaks and feet. These are mathematical mechanisms, shaped by and for the physics of a particular environment: wings have input from the air and provide the output of flight. Or the output of swimming: some wings are adapted for movement underwater, as in the cormorants, or Phalacrocoracidae, whose beaks are adapted for seizing fish and feet for paddling.

Sample page from Collins Bird Guide by Lars Svensson

You can look through this book and survey the varying geometry of wings, beaks and feet, from gliding gulls to hovering warblers, from seed-cracking finches to flesh-tearing owls, from tiny-toed swifts to wading egrets. The tool-kit of the common ancestor has become many tool-kits and evolution has been morally neutral as it has worked its multiplicative magic. The feet of the odd and endearing wallcreeper, Tichodroma muraria, are adapted to clinging onto vertical rock; the feet of eagles and owls are adapted to puncturing nerve-filled flesh. And presumably each species enjoys using its adaptation. A distinct psychology will accompany each distinct wing, beak and foot, because no organ can change in isolation: it is evolving within the environment of the body, influencing and influenced by other organs, in particular the brain.

But changes in the brain aren’t easily visible. If they were, some parts of evolution would be much less controversial: racial differences in human intelligence, for example. But races differ in other ways: in their attitudes to animals, for example. One generalization is that northern Europeans like listening to songbirds and southern Europeans like shooting them. So it’s not surprising that this book was originally published in Swedish as Fågelguiden, Europas och Medelhavsområdets fåglar i fält (1999). It would also be interesting to see the statistics of ornithological publishing in Europe. Those statistics will reflect genetic differences in the white European race, and so will readers’ reactions to the book.

My interest is partly aesthetic and mathematical, for example, and I quail at the thought of learning the differences between what bird-watchers call “little brown jobs”: the various kinds of warbler are hard enough to tell apart in pictures, let alone in the wild. But things can get even worse at night: Lars Svensson notes of Savi’s warbler, Locustella luscinioides, that “A possible confusion risk at distance and at night in S and C Europe is the mole-cricket” (“Warblers”, pg. 318). Birdsong and bird-cries are another aspect of ornitho-mathematics, but it’s hard to represent them in print: “kru-kih karra-kru-kih chivi trü chivi chih” (clamorous reed warbler, Acrocephalus stentoreus, pg. 322), “glipp-glipp-glipp” (common crossbill, Loxia curvirostra, pg. 386), “trrsh, trre-trre-trre-rrerrerre” (sand martin, Riparia riparia, pg. 258), “pyük…popopo…” (pygmy owl, Glaucidium passerinum, pg. 226), “brrreep, bip bip bip” (red phalarope, Phalaropus fulicarius, pg. 162), and so on.

In an electronic manual of ornithology, you’d be able to hear the songs, rather than imagine them, but electronic manuals, by offering more, in some ways offer less. Because the book has so many species to cover, it can’t describe any species in detail. So there are occasional fleeting comments like this:

Asian Desert Warbler, Sylvia nana V*** [= rare vagrant in northern Europe]… has the peculiar habit of sometimes “tailing” the Desert Wheatear [Oenanthe deserti] (“Warblers”, pg. 310-1)

The accompanying illustration shows a desert warbler standing under a small bush and peering out at a nearby wheatear. It’s anthropomorphic and anthropocentric to be amused by the behaviour, but ornithology is a human invention and humans don’t have to be purely scientific. I get a boy-racer thrill from another “V***” bird, the white-throated needletail, Hirundapus caudacutus:

Big, with heavy compact body, neckless, stub-tailed (shape somewhere between fat cigar and “flying barrel”). Flight impressively fast, the bird seems to draw easily away from other swifts (though these are still fast flyers!). (“Vagrants”, pg. 415)

That I would like to see. In the meantime, I have this book and the multiplex mutational mathematics it captures in pictures and words.

Flesh and Fear

Understanding Owls by Jemima Parry-JonesUnderstanding Owls: Biology, Management, Breeding, Training, Jemima Parry-Jones (David & Charles, 1998)

We come into the world ready for the world. And in more ways than one. We aren’t just born with sense-organs and a brain designed to use them: we’re born with instinctive likes and dislikes. That’s where phobias come from. The common ones, about heights or contamination or potentially dangerous animals, are based on things that we’ve been facing and surviving for millions of years. Or failing to survive, because we didn’t pay them sufficient attention or respect. Those who did pay sufficient attention and respect were those who had more offspring and passed down the relevant, phobogenic genes.

How precisely those genes encode fear is an interesting question. Are spiders and snakes written into our brains in some sense? Monkeys are instinctively afraid of snakes, for example, and though that fear has to be triggered by example, it is obviously there to be triggered. A mother-monkey apparently reacting with fear to a flower will not induce a fear of flowers in her offspring. But if she reacts with fear to a snake, she will induce a fear of snakes. Monkeys also have special warning-calls for birds of prey. Human beings have been too big for too long to be easily afraid of birds, but we were small enough once to be their prey and genetic memories may linger. That might help explain our fascination with birds of prey. But I don’t think owls are written into our brains the way spiders and snakes probably are.

They do trigger other instincts, however: their uncanny stare, their nocturnal lives, their loud calls and the silence of their flight all help explain why they’re psychologically special to human beings and part of myth and legend around the world. This book is a practical introduction to keeping owls as pets, not general guide, but it has lots of owls in it, so it has lots of uncanny and unblinking eyes too. And a lot of beauty: owls don’t often have elegant shapes, but they often have beautiful feathers. They’re also intelligent birds and can be trained to the hand rather like eagles and falcons. Unlike eagles and falcons, however, they generally hunt small ground-animals and at night, so “Hunting with Owls” is unrewarding and Jemima Parry-Jones gives it only two pages, one of which is mostly taken up by a photo of an eagle owl (Bubo sp.). But it’s an interesting addition to a short but interesting book, with lots of attractive pictures and practical advice.