The Overlord of the Über-Feral says: Welcome to my bijou bloguette. You can scroll down to sample more or simply:

• Read a Writerization at Random: RaWaR

O.o.t.Ü.-F.: Not Just A Blog… A Key Lifestyle Commitment…

The Overlord of the Über-Feral says: Welcome to my bijou bloguette. You can scroll down to sample more or simply:

• Read a Writerization at Random: RaWaR

O.o.t.Ü.-F.: Not Just A Blog… A Key Lifestyle Commitment…

Papyrocentric Performativity Presents:

• Tormenting the Tongue – *Georgian Dictionary and Phrasebook*, Nicholas Awde and Thea Khitarishvili (Hippocrene Books 2011)

• Roc and Rawl – *Rise of the Super Furry Animals*, Ric Rawlins (The Friday Project 2015)

Or Read a Review at Random: RaRaR

The Fibonacci sequence is an infinitely rich sequence based on a very simple rule: add the previous two numbers. If the first two numbers are 1 and 1, the sequence begins like this:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025…

Plainly, the numbers increase for ever. The hundredth Fibonacci number is 354,224,848,179,261,915,075, for example, and the two-hundredth is 280,571,172,992,510,140,037,611,932,413,038,677,189,525. But there are variants on the Fibonacci sequence that don’t increase for ever. The standard rule is n(i) = n(i-2) + n(i-1). What if the rule becomes n(i) = digitsum(n(i-2)) + digitsum(n(i-1))? Now the sequence falls into a loop, like this:

1, 1, 2, 3, 5, 8, 13, 12, 7, 10, 8, 9, 17, 17, 16, 15, 13, 10, 5, 6, 11, 8, 10, 9, 10, 10, 2, 3… (length=28)

But that’s in base 10. Here are the previous bases:

1, 1, 2, 2, 2… (base=2) (length=5)

1, 1, 2, 3, 3, 2, 3… (b=3) (l=7)

1, 1, 2, 3, 5, 5, 4, 3, 4, 4, 2, 3… (b=4) (l=12)

1, 1, 2, 3, 5, 4, 5, 5, 2, 3… (b=5) (l=10)

1, 1, 2, 3, 5, 8, 8, 6, 4, 5, 9, 9, 8, 7, 5, 7, 7, 4, 6, 5, 6, 6, 2, 3… (b=6) (l=24)

1, 1, 2, 3, 5, 8, 7, 3, 4, 7, 5, 6, 11, 11, 10, 9, 7, 4, 5, 9, 8, 5, 7, 6, 7, 7, 2, 3… (b=7) (l=28)

1, 1, 2, 3, 5, 8, 6, 7, 13, 13, 12, 11, 9, 6, 8, 7, 8, 8, 2, 3… (b=8) (l=20)

1, 1, 2, 3, 5, 8, 13, 13, 10, 7, 9, 8, 9, 9, 2, 3… (b=9) (l=16)

Apart from base 2, all the bases repeat with (2, 3), which is set up in each case by (base, base) = (10, 10) in that base, equivalent to (1, 1). All bases > 2 appear to repeat with (2, 3), but I don’t understand why. The length of the sequence varies widely. Here it is in bases 29, 30 and 31:

1, 1, 2, 3, 5, 8, 13, 21, 34, 27, 33, 32, 9, 13, 22, 35, 29, 8, 9, 17, 26, 43, 41, 28, 41, 41, 26, 39, 37, 20, 29, 21, 22, 43, 37, 24, 33, 29, 6, 7, 13, 20, 33, 25, 30, 27, 29, 28, 29, 29, 2, 3… (b=29) (l=52)

1, 1, 2, 3, 5, 8, 13, 21, 34, 26, 31, 28, 30, 29, 30, 30, 2, 3 (b=30) (l=18)

1, 1, 2, 3, 5, 8, 13, 21, 34, 25, 29, 54, 53, 47, 40, 27, 37, 34, 11, 15, 26, 41, 37, 18, 25, 43, 38, 21, 29, 50, 49, 39, 28, 37, 35, 12, 17, 29, 46, 45, 31, 16, 17, 33, 20, 23, 43, 36, 19, 25, 44, 39, 23, 32, 25, 27, 52, 49, 41, 30, 41, 41, 22, 33, 25, 28, 53, 51, 44, 35, 19, 24, 43, 37, 20, 27, 47, 44, 31, 15, 16, 31, 17, 18, 35, 23, 28, 51, 49, 40, 29, 39, 38, 17, 25, 42, 37, 19, 26, 45, 41, 26, 37, 33, 10, 13, 23, 36, 29, 35, 34, 9, 13, 22, 35, 27, 32, 29, 31, 30, 31, 31, 2, 3 (b=31) (l=124)

The sequence for base 77 is short like that for base 30:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 68, 81, 73, 78, 75, 77, 76, 77, 77, 2, 3 (b=77) (l=22)

But the sequence for base 51 is this:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 39, 44, 83, 77, 60, 37, 47, 84, 81, 65, 46, 61, 57, 18, 25, 43, 68, 61, 29, 40, 69, 59, 28, 37, 65, 52, 17, 19, 36, 55, 41, 46, 87, 83, 70, 53, 23, 26, 49, 75, 74, 49, 73, 72, 45, 67, 62, 29, 41, 70, 61, 31, 42, 73, 65, 38, 53, 41, 44, 85, 79, 64, 43, 57, 50, 57, 57, 14, 21, 35, 56, 41, 47, 88, 85, 73, 58, 31, 39, 70, 59, 29, 38, 67, 55, 22, 27, 49, 76, 75, 51, 26, 27, 53, 30, 33, 63, 46, 59, 55, 14, 19, 33, 52, 35, 37, 72, 59, 31, 40, 71, 61, 32, 43, 75, 68, 43, 61, 54, 15, 19, 34, 53, 37, 40, 77, 67, 44, 61, 55, 16, 21, 37, 58, 45, 53, 48, 51, 49, 50, 99, 99, 98, 97, 95, 92, 87, 79, 66, 45, 61, 56, 17, 23, 40, 63, 53, 16, 19, 35, 54, 39, 43, 82, 75, 57, 32, 39, 71, 60, 31, 41, 72, 63, 35, 48, 83, 81, 64, 45, 59, 54, 13, 17, 30, 47, 77, 74, 51, 25, 26, 51, 27, 28, 55, 33, 38, 71, 59, 30, 39, 69, 58, 27, 35, 62, 47, 59, 56, 15, 21, 36, 57, 43, 50, 93, 93, 86, 79, 65, 44, 59, 53, 12, 15, 27, 42, 69, 61, 30, 41, 71, 62, 33, 45, 78, 73, 51, 24, 25, 49, 74, 73, 47, 70, 67, 37, 54, 41, 45, 86, 81, 67, 48, 65, 63, 28, 41, 69, 60, 29, 39, 68, 57, 25, 32, 57, 39, 46, 85, 81, 66, 47, 63, 60, 23, 33, 56, 39, 45, 84, 79, 63, 42, 55, 47, 52, 49, 51, 50, 51, 51, 2, 3… (b=51) (l=304)

Papyrocentric Performativity Presents:

• Volc-Lore – *Volcanoes: A Beginner’s Guide*, Rosaly Lopes (Oneworld 2010)

• Stokes’ Strokes – *Philosophy: 100 Essential Thinkers: The Ideas That Have Shaped Our World*, Philip Stokes (Arcturus Publishing 2012)

• Art of Darkness – *Doubled Slaughter: Barbarism, Brutalism and Bestial Bloodlust in the Music of Simon and Garfunkel*, Dr Miriam B. Stimbers (Serpent’s Tail 2007)

Or Read a Review at Random: RaRaR

The quickest way to improve your life is to stop watching TV.

• White Dot — the International Campaign against Television

I wondered what would happen if you added to a set of numbers, (*a*, *b*, *c*), the first number that wasn’t equal to the sum of any subset of the numbers: *a* + *b*, *a* + *c*, *c* + *b*, *a* + *b* + *c*. If the set begins with 1, the first number not equal to any subset of (1) is 2. So the set becomes (1, 2). 3 = 1 + 2, so 3 is not added. But 4 is added, making the set (1, 2, 4). The sequence of additions goes like this:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536…

It’s the powers of 2, because some subset of the powers of 2 < 2^p will equal any number from 1 to (2^p)-1, therefore the first addition will be 2^p = the cumulative sum + 1:

1 (cumulative sum=1), 2 (cs=3), 4 (cs=7), 8 (cs=15), 16 (cs=31), 32 (cs=63), 64 (cs=127), 128 (cs=255), 256 (cs=511), 512 (cs=1023), 1024 (cs=2047), 2048 (cs=4095), 4096 (cs=8191), 8192 (cs=16383), 16384 (cs=32767), 32768 (cs=65535)…

If you seed the sequence with the set (2), the first addition is 3, but after that the powers of 2 re-appear:

2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536…

It becomes more complicated if the sequence is seeded with the set (3):

3, 4, 5, 6, 16, 17, 49, 50, 148, 149, 445, 446, 1336, 1337, 4009, 4010, 12028, 12029, 36085, 36086…

You can predict the pattern by looking at the cumulative sums again:

3, 4, 5, 6 (cumulative sum=18), 16, 17 (cs=51), 49, 50 (cs=150), 148, 149 (cs=447), 445, 446 (cs=1338), 1336, 1337 (cs=4011), 4009, 4010 (cs=12030), 12028, 12029 (cs=36087), 36085, 36086 (cs=108258)…

The sequence begins with a block of four consecutive numbers, followed by separate blocks of two consecutive numbers. The first number in each 2-block is predicted by the cumulative sum of the last number in the previous block, according to the formula n = cumulative sum – seed + 1. When the seed is 3, n = cs-3+1.

If the seed is 4, the sequences goes like this:

4, 5, 6, 7, 8, 27, 28, 29, 111, 112, 113, 447, 448, 449, 1791, 1792, 1793, 7167, 7168, 7169…

Now the sequence begins with a block of five consecutive numbers, followed by separate blocks of three consecutive numbers. The formula is n = cs-4+1:

4, 5, 6, 7, 8 (cumulative sum=30), 27, 28, 29 (cs=114), 111, 112, 113 (cs=450), 447, 448, 449 (cs=1794), 1791, 1792, 1793 (cs=7170), 7167, 7168, 7169 (cs=28674)…

And here’s the sequence seeded with (5):

5, 6, 7, 8, 9, 10, 41, 42, 43, 44, 211, 212, 213, 214, 1061, 1062, 1063, 1064, 5311, 5312, 5313, 5314…

5, 6, 7, 8, 9, 10 (cs=45), 41, 42, 43, 44 (cs=215), 211, 212, 213, 214 (cs=1065), 1061, 1062, 1063, 1064 (cs=5315), 5311, 5312, 5313, 5314 (cs=26565)…

**In Terms of My Natural Life**

(a pome crafted by Les Patterson)

I am an Australian in terms of Nation

And a Public Servant in terms of vocation,

But there’s one thing amazes my critics and that’s

How many I wear in terms of hats:

I chair the Cheese Board, I front the Yartz

You could term me a man of many parts.

I’m a Renaissance type, if you know the term

And I’ve held long office in terms of term,

Yes, I’ve long served Australia in terms of years

And in terms of refreshment I like a few beers.

My opponents are mongrels, scum and worms

Who I bucket in no uncertain terms

And my rich vocabulary always features

Large in terms of my public speeches.

My favourite terms in terms of debate

Are: “broadbased package” and “orchestrate”.

But one term I never employ is “failure” —

Especially when talking in terms of Australia!

For in terms of lifestyle we’ve got the germs of

A ripper concept to think in terms of.

Yes, in terms of charisma I’ve got the game mastered

In anyone’s terms I’m a *well-liked* bastard.

From the *Back With A Vengeance* Tour Brochure © 1989 Sir Les Patterson.

Elsewhere Other-Engageable:

**OCTOPUS**

By Algernon Charles Sin-burn

STRANGE beauty, eight-limbed and eight-handed,

Whence camest to dazzle our eyes?

With thy bosom bespangled and banded

With the hues of the seas and the skies;

Is thy home European or Asian,

O mystical monster marine?

Part molluscous and partly crustacean,

Betwixt and between.

Wast thou born to the sound of sea trumpets,

Hast thou eaten and drunk to excess

Of the sponges — thy muffins and crumpets;

Of the seaweed — thy mustard and cress?

Wast thou nurtured in caverns of coral,

Remote from reproof or restraint?

Art thou innocent, art thou immoral,

Sinburnian or Saint?

Lithe limbs, curling free, as a creeper

That creeps in a desolate place,

To enroll and envelop the sleeper

In a silent and stealthy embrace,

Cruel beak craning forward to bite us,

Our juices to drain and to drink,

Or to whelm us in waves of Cocytus,

Indelible ink!

O breast, that ’twere rapture to writhe on!

O arms, ’twere delicious to feel

Clinging close with the crush of the Python,

When she maketh her murderous meal!

In thy eightfold embraces enfolden,

Let our empty existence escape;

Give us death that is glorious and golden,

Crushed all out of shape!

Ah! thy red lips, lascivious and luscious,

With death in their amorous kiss,

Cling round us, and clasp us, and crush us,

With bitings of agonized bliss;

We are sick with the poison of pleasure,

Dispense us the potion of pain;

Ope thy mouth to its uttermost measure

And bite us again!

Arthur Clement Hilton (1851–77), written at the Crystal Palace Aquarium.